In Burkitt's lymphoma cells, Epstein Barr virus (EBV) latency products interact with the ubiquitin-proteasome system to promote episomal maintenance and immunological evasion while the tripeptidylpeptidase II (TPPII) functions as an alternative protease. In the present study, we have examined the activities and levels of the proteasome and TPPII complex in Raji and in Akata cells after induction of EBV lytic cycle. The results show that the chymotrypsin-like and caspase-like activities of the proteasome were substantially reduced in Raji and Akata cells. Similarly, TPPII activity was diminished in both cell lines but was recovered in Akata cells at longer time after induction. Protein levels of the alpha/beta subunits of the 20S proteasome and TPPII concentration decreased to different extents after EBV activation, whereas the ubiquitin binding S6' subunit of the 19S regulatory complex increased three to fourfold along with the levels of ubiquitin-conjugates. Collectively, these observations demonstrate impairment of two major cellular proteolytic systems at the onset of EBV lytic infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.11.127 | DOI Listing |
J Virol
October 2024
Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.
Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53.
View Article and Find Full Text PDFmBio
July 2024
Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: Epstein-Barr virus (EBV) is a ubiquitous human tumor virus that establishes lifelong, persistent infections in B cells. The presence of EBV in cancer cells presents an opportunity to target these cells by reactivating the virus from latency. In this study, we developed a novel approach for EBV reactivation termed clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated EBV reactivation (CMER) strategy.
View Article and Find Full Text PDFJ Virol
February 2024
Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC).
View Article and Find Full Text PDFNat Immunol
February 2024
Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Tumour Virus Res
June 2024
São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil. Electronic address:
The Epstein-Barr Virus (EBV) encodes viral microRNAs (miRs) that have been implicated in the pathogenesis of nasopharyngeal and gastric carcinomas, yet their potential roles in lymphomas remain to be fully elucidated. This study evaluated the impact of CRISPR/Cas9-mediated knockdown of EBV miRs BART-7 and BART-9 in EBV-positive Burkitt lymphoma cells Akata. As anticipated, the Akata cells subjected to CRISPR/Cas9-mediated knockdown of either EBV BART-7 or BART-9 exhibited a significant reduction in the expression of these viral miRs compared to cells with wild-type (wt) EBV genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!