Unlabelled: Although mechanical hyperalgesia associated with medical procedures is the major source of severe pain in burn-injured patients, little is known about its underlying mechanism. One reason for this has been the lack of a model for mechanical hyperalgesia at the site of injury. We have modified an established partial-thickness burn model in the rat to produce long-lasting primary mechanical hyperalgesia, which is present from the first measurement at 0.5 h, reaches a maximum at 3 days, and is still significant after 7 days. Because nerve growth factor (NGF), which is elevated in burn-injured tissue, produces mechanical hyperalgesia and activates protein kinase C (PKC)-epsilon, a key mediator in inflammatory and neuropathic pain, we used this model to evaluate the role of the NGF receptor, tyrosine-receptor kinase A (TrkA), and PKC-epsilon in burn-induced primary mechanical hyperalgesia. Intrathecal administration of antisense oligodeoxynucleotides to TrkA and PKC-epsilon, starting 3 days before inducing a burn injury, caused dose-related decrease of burn-induced primary mechanical hyperalgesia. In addition, intradermal injection of a PKC-epsilon-selective inhibitor eliminated hyperalgesia. Our model provides a method to elucidate the underlying mechanism of burn-injury pain as well as to screen for targets for novel analgesic treatments of this important clinical condition.

Perspective: This manuscript presents the first model of thermal injury-induced mechanical hyperalgesia which mimics prolonged duration of clinical burn injury pain. We also perform proof of concept experiments demonstrating that our model provides a method to elucidate the mechanism of this important clinical condition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpain.2006.04.009DOI Listing

Publication Analysis

Top Keywords

mechanical hyperalgesia
32
trka pkc-epsilon
12
primary mechanical
12
hyperalgesia
9
mechanical
8
underlying mechanism
8
burn-induced primary
8
burn injury
8
model method
8
method elucidate
8

Similar Publications

NRG1-ErbB4 signaling in the cerebrospinal fluid-contacting nucleus regulates thermal pain in mice.

Neuroscience

December 2024

Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China. Electronic address:

The cerebrospinal fluid-contacting nucleus(CSF-contacting nucleus) is a pair of unique nuclei in the brain parenchyma which has long been demonstrated to play an important role in pain signal processing. However, the role of the CSF-contacting nucleus in postoperative pain is still unclear. Here, our works showed that c-Fos expression in the CSF-contacting nucleus was increased in response to incisional pain.

View Article and Find Full Text PDF

Objective: Among patients with acute stroke, we aimed to identify those who will later develop central post-stroke pain (CPSP) versus those who will not (non-pain sensory stroke [NPSS]) by assessing potential differences in somatosensory profile patterns and evaluating their potential as predictors of CPSP.

Methods: In a prospective longitudinal study on 75 acute stroke patients with somatosensory symptoms, we performed quantitative somatosensory testing (QST) in the acute/subacute phase (within 10 days) and on follow-up visits for 12 months. Based on previous QST studies, we hypothesized that QST values of cold detection threshold (CDT) and dynamic mechanical allodynia (DMA) would differ between CPSP and NPSS patients before the onset of pain.

View Article and Find Full Text PDF

Enriched environment prevents hypernociception and depression-like behavior in a psychiatric disorder and neuropathic pain comorbidity experimental condition.

Physiol Behav

December 2024

Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo,14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes 3900, Ribeirão Preto, 14040-900, São Paulo, Brazil. Electronic address:

Pain is a multifactorial debilitating condition associated with some psychiatric comorbidities such as generalized anxiety and depression. Concerning pharmacological treatment, which is often inefficient or associated with intense side effects, the physical and social context may be fundamental for patient's health improvement. In this sense, we sought to assess the impact of an enriched environment (EE) on neuropathic pain (NP) and depression comorbid.

View Article and Find Full Text PDF

Background And Purpose: Irritable bowel syndrome (IBS) is a common condition that is challenging to treat, and novel drugs are needed for this condition. Previously, a chronic vicarious social defeat stress (cVSDS) mouse model exhibits IBS-like symptoms. Also agonists of the opioid δ-receptor exert anti-stress effects in rodents with minimal adverse effects.

View Article and Find Full Text PDF

Tachykinin signaling in the right parabrachial nucleus mediates early-phase neuropathic pain development.

Neuron

December 2024

Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China. Electronic address:

The lateral parabrachial nucleus (PBN) is critically involved in neuropathic pain modulation. However, the cellular and molecular mechanisms underlying this process remain largely unknown. Here, we report that in mice, the right-sided, but not the left-sided, PBN plays an essential role in the development of hyperalgesia following nerve injury, irrespective of the injury side.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!