We report a 22-year-old female with a variant of the Axenfeld-Rieger Syndrome (ARS) and discuss its relation with the subtelomeric 6p deletion. An ARS variant has been described in two familial cases of Axenfeld-Rieger Anomaly (ARA) featuring specific extra ocular manifestations-hypertelorism, midface hypoplasia, mild sensorial deafness, hydrocephaly, psychomotor delay and flattened femoral epiphyses. We proposed that this set of characteristics represents a separate syndrome within the ARS. On the other hand, there have been reported four cases with cryptic de novo pure 6pter microdeletions detected by specific subtelomeric probes in patients with ARS characteristics. We describe a 6pter deletion detected by SNP genotyping and confirmed by FISH and MLPA involving the FOXC1 gene in a patient with ocular and systemic findings that fit perfectly with the variant mentioned above. We conclude that the ARS variant belongs to the ARS phenotypic spectrum, which includes flattened femoral epiphyses as a feature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2006.10.005DOI Listing

Publication Analysis

Top Keywords

variant axenfeld-rieger
8
axenfeld-rieger syndrome
8
subtelomeric deletion
8
syndrome ars
8
ars variant
8
flattened femoral
8
femoral epiphyses
8
ars
6
variant
5
clinical presentation
4

Similar Publications

Deletion of exon 4 of the in a child with Axenfeld-Rieger syndrome.

Ophthalmic Genet

December 2024

Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China.

Article Synopsis
  • - Axenfeld-Rieger syndrome (ARS) is a genetic disorder with eye and systemic symptoms, showing variability among patients; this study presents two cases (a boy and his mother) with a new genetic variant linked to ARS.
  • - The proband, a 3-month-old boy, exhibited several abnormalities including eye development issues, skin and dental problems, and a heart condition, while his mother has been blind since age 12; genetic testing revealed a specific deletion in their DNA.
  • - The findings indicate that this deletion leads to ARS phenotype type I, highlighting that certain genetic mutations in the affected gene are common causes of the disorder, thus improving understanding of ARS manifestations.
View Article and Find Full Text PDF

Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation.

View Article and Find Full Text PDF

Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms.

Prog Retin Eye Res

September 2024

Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. Electronic address:

Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis.

View Article and Find Full Text PDF

In Silico Characterization of Pathogenic Homeodomain Missense Mutations in the PITX2 Gene.

Biochem Genet

May 2024

Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India.

Paired homologous domain transcription factor 2 (PITX2) is critically involved in ocular and cardiac development. Mutations in PITX2 are consistently reported in association with Axenfeld-Rieger syndrome, an autosomal dominant genetic disorder and atrial fibrillation, a common cardiac arrhythmia. In this study, we have mined missense mutations in PITX2 gene from NCBI-dbSNP and Ensembl databases, evaluated the pathogenicity of the missense variants in the homeodomain and C-terminal region using five in silico prediction tools SIFT, PolyPhen2, GERP, Mutation Assessor and CADD.

View Article and Find Full Text PDF

Recent studies have uncovered that noncoding sequence variants may relate to Axenfeld-Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, how these genomic regions are functionally and structurally associated with ARS is still unclear. In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a Chinese family with ARS and identified a heterozygous deletion of about 570 kb (termed LOH-1) in the intergenic sequence between paired-like homeodomain transcription factor 2 (PITX2) and family with sequence similarity 241 member A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!