The Met4 transcriptional activator of methionine biosynthesis is negatively regulated by the SCFMet30 ubiquitin ligase in response to accumulation of methionine. This mechanism requires polyubiquitination, but not proteolysis. We report that a previously unappreciated mechanism involving growth control regulates Met4. Unless methionine is present in the growth medium, polyubiquitinated Met4 is stabilized in late exponential cultures, correlating with transcriptional repression. Polyubiquitinated Met4 becomes destabilized in a proteasome-dependent manner upon reentry into exponential growth, correlating with transcriptional activation. Met4 stabilization is regulated at the level of SCFMet30 binding and requires transcriptional cofactors. These lock Met4 and SCFMet30 into a tight complex active in ubiquitination but incapable of binding the proteasome. Release of polyubiquitinated Met4 from SCFMet30 is sufficient for degradation, and specific sulfur amino acids can promote the degradation by destabilizing Met4 binding to cofactors and SCFMet30. Thus, destabilization of cofactors and SCFMet30 binding is the rate-limiting regulatory step in Met4 proteolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2006.10.028DOI Listing

Publication Analysis

Top Keywords

polyubiquitinated met4
16
cofactors scfmet30
12
met4
10
binding cofactors
8
rate-limiting regulatory
8
regulatory step
8
correlating transcriptional
8
scfmet30 binding
8
met4 scfmet30
8
scfmet30
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!