The 2.25 A crystal structure of a complex of Aurora A kinase (AIKA) with cyclopropanecarboxylic acid-(3-(4-(3-trifluoromethyl-phenylamino)-pyrimidin-2-ylamino)-phenyl)-amide 1 is described here. The inhibitor binding mode is novel, with the cyclopropanecarboxylic acid moiety directed towards the solvent exposed region of the ATP-binding pocket, and several induced structural changes in the active-site compared with other published AIK structures. This structure provides context for the available SAR data on this compound class, and could be exploited for the design of analogs with increased affinity and selectivity for AIK.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2006.10.086DOI Listing

Publication Analysis

Top Keywords

aurora kinase
8
structural basis
4
basis inhibition
4
inhibition aurora
4
kinase novel
4
novel class
4
class high
4
high affinity
4
affinity disubstituted
4
disubstituted pyrimidine
4

Similar Publications

Effective therapeutic strategies for epithelioid sarcoma (EpS), a high-grade soft tissue sarcoma characterized by loss of integrase interactor 1 (INI1), have not yet been developed. The present study therefore investigated the association between INI1 loss and upregulation of the aurora kinase A (AURKA)/polo-like kinase 1 (PLK1)/cell division cycle 25C (CDC25C) axis, as well as the therapeutic relevance of this axis in EpS. Notably, our findings showed that the reintroduction of INI1 in VA-ES-BJ cells significantly reduced proliferation, mitigated tumorigenicity, and negatively regulated the expression of AURKA and its downstream effectors, as well as the activation of PLK1 and CDC25C.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression level of the target genes in the cell. Breast cancer is responsible for the majority of cancer-related deaths among women globally. It has been proven that deregulated miRNAs may play an essential role in the progression of breast cancer.

View Article and Find Full Text PDF

Polyploidy is a common outcome of chemotherapies, but there is conflicting evidence as to whether polyploidy is an adverse, benign or even favourable outcome. We show Aurora B kinase inhibitors efficiently promote polyploidy in many cell types, resulting in the cell cycle exit in RB and p53 functional cells, but hyper-polyploidy in cells with loss of RB and p53 function. These hyper-polyploid cells (>8n DNA content) are viable but have lost long-term proliferative potential in vitro and fail to form tumours in vivo.

View Article and Find Full Text PDF

Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders.

Cell Chem Biol

January 2025

Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.

View Article and Find Full Text PDF

In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein.

Methods Mol Biol

January 2025

Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.

While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!