The chloride channel 2 (CLCN2) gene codes for a protein organized in N- and C-terminal regions with regulatory functions and a transmembrane region which forms the ring of the pore. Mutations in the gene have previously been described in patients with idiopathic familial epilepsy. In this study we looked for new isoforms of CLCN2 and we estimated expression levels by real time PCR in brain tissue containing epileptic foci. Samples used in this study were first analyzed and selected to exclude mutations in the coding region of the gene. Four isoforms (skipping exons 3, 16, 22 and 6/7) were identified and quantified by Real Time PCR and compared with total expression of the gene. Expression of the region common to all CLCN2 isoforms was 50% less in epilepsy-associated brain tissue than in controls. The ratio of the various isoforms was slightly greater in epileptic than control tissue. The greatest difference was recorded in the temporal lobe for the isoform with skipped exon 22. Analysis of these isoforms in brain tissue containing epileptic foci suggests that CLCN2 could be implicated in epilepsy, even in the absence of mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2006.10.015 | DOI Listing |
J Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFSarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.
View Article and Find Full Text PDFParkinsons disease (PD) is considered one of the most frequent neurological diseases in the world. There is a need to study the early and efficient biomarkers of Parkinsons, such as changes in structural disorders like DNA and chromatin, especially at the subcellular level in the human brain. We used two techniques, Partial wave spectroscopy (PWS) and Inverse Participation Ratio (IPR), to detect the changes in structural disorder in the human brain tissue samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!