Population abundances are rarely, if ever, known. Instead, they are estimated with some amount of uncertainty. The resulting measurement error has its consequences on subsequent analyses that model population dynamics and estimate probabilities about abundances at future points in time. This article addresses some outstanding questions on the consequences of measurement error in one such dynamic model, the random walk with drift model, and proposes some new ways to correct for measurement error. We present a broad and realistic class of measurement error models that allows both heteroskedasticity and possible correlation in the measurement errors, and we provide analytical results about the biases of estimators that ignore the measurement error. Our new estimators include both method of moments estimators and "pseudo"-estimators that proceed from both observed estimates of population abundance and estimates of parameters in the measurement error model. We derive the asymptotic properties of our methods and existing methods, and we compare their finite-sample performance with a simulation experiment. We also examine the practical implications of the methods by using them to analyze two existing population dynamics data sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1541-0420.2006.00615.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!