Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet.

Phys Rev Lett

Physics of Nanodevices Group, Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Published: November 2006

We report direct electrical detection of spin pumping, using a lateral normal-metal/ferromagnet/normal-metal device, where a single ferromagnet in ferromagnetic resonance pumps spin-polarized electrons into the normal metal, resulting in spin accumulation. The resulting backflow of spin current into the ferromagnet generates a dc voltage due to the spin-dependent conductivities of the ferromagnet. By comparing different contact materials (Al and/or Pt), we find, in agreement with theory, that the spin-related properties of the normal metal dictate the magnitude of the dc voltage.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.216603DOI Listing

Publication Analysis

Top Keywords

electrical detection
8
detection spin
8
spin pumping
8
single ferromagnet
8
normal metal
8
spin
4
pumping precessing
4
precessing magnetization
4
magnetization single
4
ferromagnet
4

Similar Publications

Introduction: Data on circumstances of sudden cardiac arrest (SCA) in Germany are limited. The present study aimed to investigate systematically the current pre- and in-hospital circumstances of a SCA cohort at young age (65 years or younger) in Germany.

Methods: In the period from 2010 to 2021, we enrolled 191 consecutive patients with SCA at a university hospital in the Ruhr area, Germany.

View Article and Find Full Text PDF

Advanced Morphological and Material Engineering for High-Performance Interfacial Iontronic Pressure Sensors.

Adv Sci (Weinh)

January 2025

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.

High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time.

View Article and Find Full Text PDF

Chiral and Quantum Plasmonic Sensors: New Frontiers in Selective and Ultra-Sensitive Sensing.

Small

January 2025

Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038, India.

Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmon Resonances (LSPRs) are fundamental phenomena in plasmonics that enable the confinement of electromagnetic waves beyond the diffraction limit. This confinement results in a significant enhancement of the electric field, making this phenomenon particularly beneficial for sensitive detection applications. However, conventional plasmonic sensors face several challenges, notably their difficulty in distinguishing chiral molecules, which are vital in drug development.

View Article and Find Full Text PDF

Background: The gold standard for crystal arthritis diagnosis relies on the identification of either monosodium urate (MSU) or calcium pyrophosphate (CPP) crystals in synovial fluid. With the goal of enhanced crystal detection, we adapted a standard compensated polarized light microscope (CPLM) with a polarized digital camera and multi-focal depth imaging capabilities to create digital images from synovial fluid mounted on microscope slides. Using this single-shot computational polarized light microscopy (SCPLM) method, we compared rates of crystal detection and raters' preference for image.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!