Artificial electric field in fermi liquids.

Phys Rev Lett

Department of Physics, University of California, Santa Barbara, California 93106, USA.

Published: November 2006

Based on the Keldysh formalism, we derive an effective Boltzmann equation for a quasiparticle constrained within a particular Fermi surface in an interacting Fermi liquid. This provides a many-body derivation of Berry curvatures in electron dynamics with spin-orbit coupling, which has received much attention in recent years in noninteracting models. As is well known, the Berry curvature in momentum space modifies naïve band dynamics via an "artificial magnetic field" in momentum space. Our Fermi liquid formulation completes the reinvention of modified band dynamics by introducing in addition an artificial electric field, related to Berry curvature in frequency and momentum space. We show explicitly how the artificial electric field affects the renormalization factor and transverse conductivity of interacting U(1) Fermi liquids with nondegenerate bands.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.216601DOI Listing

Publication Analysis

Top Keywords

artificial electric
12
electric field
12
momentum space
12
fermi liquids
8
interacting fermi
8
fermi liquid
8
berry curvature
8
band dynamics
8
fermi
5
field fermi
4

Similar Publications

Bipolar disorder is a leading contributor to the global burden of disease. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.

View Article and Find Full Text PDF

A lightweight prosthetic hand with 19-DOF dexterity and human-level functions.

Nat Commun

January 2025

Institute of Humanoid Robots, School of Engineering Science, University of Science and Technology of China, Hefei, 230026, China.

A human hand has 23-degree-of-freedom (DOF) dexterity for managing activities of daily living (ADLs). Current prosthetic hands, primarily driven by motors or pneumatic actuators, fall short in replicating human-level functions, primarily due to limited DOF. Here, we develop a lightweight prosthetic hand that possesses biomimetic 19-DOF dexterity by integrating 38 shape-memory alloy (SMA) actuators to precisely control five fingers and the wrist.

View Article and Find Full Text PDF

Despite decades of advancements in diagnostic MRI, 30-50% of temporal lobe epilepsy (TLE) patients remain categorized as "non-lesional" (i.e., MRI negative or MRI-) based on visual assessment by human experts.

View Article and Find Full Text PDF

Therapeutic gene target prediction using novel deep hypergraph representation learning.

Brief Bioinform

November 2024

Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea.

Identifying therapeutic genes is crucial for developing treatments targeting genetic causes of diseases, but experimental trials are costly and time-consuming. Although many deep learning approaches aim to identify biomarker genes, predicting therapeutic target genes remains challenging due to the limited number of known targets. To address this, we propose HIT (Hypergraph Interaction Transformer), a deep hypergraph representation learning model that identifies a gene's therapeutic potential, biomarker status, or lack of association with diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!