Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals.

Phys Rev Lett

Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, NL-1018XE Amsterdam, The Netherlands.

Published: November 2006

We report on an observation of a fast 1.5 microm photoluminescence band from Er3+ ions embedded in an SiO2 matrix doped with Si nanocrystals, which appears and decays within the first microsecond after the laser excitation pulse. We argue that the fast excitation and quenching are facilitated by Auger processes related to transitions of confined electrons or holes between the space-quantized levels of Si nanocrystals dispersed in SiO2. We show that a great part--about 50%--of all Er dopants is involved in these fast processes and contributes to the submicrosecond emission.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.207401DOI Listing

Publication Analysis

Top Keywords

nanosecond dynamics
4
dynamics near-infrared
4
near-infrared photoluminescence
4
photoluminescence er-doped
4
er-doped sio2
4
sio2 sensitized
4
sensitized nanocrystals
4
nanocrystals report
4
report observation
4
observation fast
4

Similar Publications

In the relentless pursuit of unraveling the intricate pathophysiology of Alzheimer's disease (AD), amyloid β (Aβ) proteins emerge as focal points due to their pivotal role in disease progression. The pathological hallmark of AD involves the aberrant aggregation of Aβ peptides into amyloid fibrils, precipitating a cascade of neurodegenerative events culminating in cognitive decline and neuronal loss. This study adopts a computational framework to investigate the potential therapeutic efficacy of novel biosurfactants (BS) in mitigating Aβ fibril formation.

View Article and Find Full Text PDF

Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.

Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.

View Article and Find Full Text PDF

The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.

View Article and Find Full Text PDF

The modification of Pt surfaces with organic compounds like melamine enhances oxygen reduction reaction activity and catalyst durability. Through first-principles free energy calculations utilizing thermodynamic integration and finite-temperature molecular dynamics, enhanced by machine learning force fields for efficient sampling of nanosecond-scale interfacial water fluctuations and incorporating corrections to accurately reproduce first-principles free energies, we demonstrate that melamine destabilizes OH adsorbates, facilitating their removal and enhancing catalytic activity. Unlike alloys, where OH destabilization is driven by changes in electronic structure and surface strain, melamine disrupts hydrogen bonding between OH and interfacial water.

View Article and Find Full Text PDF

Lead-Free Manganese Halide Perovskite for Minute-Level Dynamic Time-Gating Anticounterfeiting.

ACS Appl Mater Interfaces

December 2024

School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.

The dynamic time-gating anticounterfeiting based on phosphorescence materials is the current hot topic of research. However, the short change time from nanosecond-level fluorescence false information to μs-level fluorescence correct information makes it easily deciphered just by turning off ultraviolet (UV) light. Herein, we first reported a new type of minute-level dynamic time-gating anticounterfeiting technology based on the ethanol-induced phase transition between the red-emitting CsMnBr crystals and green-emitting CsMnBr crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!