We report on an observation of a fast 1.5 microm photoluminescence band from Er3+ ions embedded in an SiO2 matrix doped with Si nanocrystals, which appears and decays within the first microsecond after the laser excitation pulse. We argue that the fast excitation and quenching are facilitated by Auger processes related to transitions of confined electrons or holes between the space-quantized levels of Si nanocrystals dispersed in SiO2. We show that a great part--about 50%--of all Er dopants is involved in these fast processes and contributes to the submicrosecond emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.97.207401 | DOI Listing |
J Biomol Struct Dyn
December 2024
Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
In the relentless pursuit of unraveling the intricate pathophysiology of Alzheimer's disease (AD), amyloid β (Aβ) proteins emerge as focal points due to their pivotal role in disease progression. The pathological hallmark of AD involves the aberrant aggregation of Aβ peptides into amyloid fibrils, precipitating a cascade of neurodegenerative events culminating in cognitive decline and neuronal loss. This study adopts a computational framework to investigate the potential therapeutic efficacy of novel biosurfactants (BS) in mitigating Aβ fibril formation.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.
Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.
J Biomol Struct Dyn
December 2024
School of Biotechnology, KIIT Deemed To be University, Bhubaneswar, Odisha, India.
The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Toyota Central R&D Laboratories, Inc., Nagakute 480-1192, Aichi, Japan.
The modification of Pt surfaces with organic compounds like melamine enhances oxygen reduction reaction activity and catalyst durability. Through first-principles free energy calculations utilizing thermodynamic integration and finite-temperature molecular dynamics, enhanced by machine learning force fields for efficient sampling of nanosecond-scale interfacial water fluctuations and incorporating corrections to accurately reproduce first-principles free energies, we demonstrate that melamine destabilizes OH adsorbates, facilitating their removal and enhancing catalytic activity. Unlike alloys, where OH destabilization is driven by changes in electronic structure and surface strain, melamine disrupts hydrogen bonding between OH and interfacial water.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
The dynamic time-gating anticounterfeiting based on phosphorescence materials is the current hot topic of research. However, the short change time from nanosecond-level fluorescence false information to μs-level fluorescence correct information makes it easily deciphered just by turning off ultraviolet (UV) light. Herein, we first reported a new type of minute-level dynamic time-gating anticounterfeiting technology based on the ethanol-induced phase transition between the red-emitting CsMnBr crystals and green-emitting CsMnBr crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!