Emergence of artificial photons in an optical lattice.

Phys Rev Lett

Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA.

Published: November 2006

We establish the theoretical feasibility of direct analog simulation of the compact U(1) lattice gauge theories in optical lattices with dipolar bosons. We discuss the realizability of the topological Coulomb phase in extended Bose-Hubbard models in several optical lattice geometries. We predict the testable signatures of this emergent phase in noise correlation measurements, thus suggesting the possible emergence of artificial light in optical lattices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.200401DOI Listing

Publication Analysis

Top Keywords

emergence artificial
8
optical lattice
8
optical lattices
8
artificial photons
4
optical
4
photons optical
4
lattice establish
4
establish theoretical
4
theoretical feasibility
4
feasibility direct
4

Similar Publications

Background: Minimizing radiation exposure is crucial in monitoring adolescent idiopathic scoliosis (AIS). Generative adversarial networks (GANs) have emerged as valuable tools being able to generate high-quality synthetic images. This study explores the use of GANs to generate synthetic sagittal radiographs from coronal views in AIS patients.

View Article and Find Full Text PDF

Generative AI as a tool to accelerate the field of ecology.

Nat Ecol Evol

January 2025

Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA.

The emergence of generative artificial intelligence (AI) models specializing in the generation of new data with the statistical patterns and properties of the data upon which the models were trained has profoundly influenced a range of academic disciplines, industry and public discourse. Combined with the vast amounts of diverse data now available to ecologists, from genetic sequences to remotely sensed animal tracks, generative AI presents enormous potential applications within ecology. Here we draw upon a range of fields to discuss unique potential applications in which generative AI could accelerate the field of ecology, including augmenting data-scarce datasets, extending observations of ecological patterns and increasing the accessibility of ecological data.

View Article and Find Full Text PDF

Bridging the Gap: Phage Manufacturing Processes from Laboratory to Agri-Food Industry.

Virus Res

January 2025

Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran. Electronic address:

Interest in bacteriophages (phages) as sustainable biocontrol agents in the agri-food industry has increased because of growing worries about food safety and antimicrobial resistance (AMR). The phage manufacturing process is examined in this review, with particular attention paid to the crucial upstream and downstream processes needed for large-scale production. Achieving large phage yields requires upstream procedures, including fermentation and phage amplification.

View Article and Find Full Text PDF

Swarm systems as a platform for open-ended evolutionary dynamics.

Philos Trans A Math Phys Eng Sci

January 2025

Binghamton Center of Complex Systems, Binghamton University, State University of New York, Binghamton, NY 13902, USA.

Artificial swarm systems have been extensively studied and used in computer science, robotics, engineering and other technological fields, primarily as a platform for implementing robust distributed systems to achieve pre-defined objectives. However, such swarm systems, especially heterogeneous ones, can also be utilized as an ideal platform for creating open-ended evolutionary dynamics that do not converge toward pre-defined goals but keep exploring diverse possibilities and generating novel outputs indefinitely. In this article, we review Swarm Chemistry and its variants as concrete sample cases to illustrate beneficial characteristics of heterogeneous swarm systems, including the cardinality leap of design spaces, multi-scale structures/behaviours and their diversity, and robust self-organization, self-repair and ecological interactions of emergent patterns, all of which serve as the driving forces for open-ended evolutionary processes.

View Article and Find Full Text PDF

Human-inspired strategies for controlling swarm systems.

Philos Trans A Math Phys Eng Sci

January 2025

Performance and Expertise Research Centre, Macquarie University, Sydney NSW 2109, Australia.

The control of swarms has emerged as a paradigmatic example of human-autonomy teaming. This review focuses on understanding human coordination behaviours, while controlling evasive autonomous agents, to inform the design of human-compatible teammates. We summarize the solutions employed by human dyads, as well as the verbal communication and division of labour strategies observed in four-person teams using virtual simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!