Condensation of N interacting bosons: a hybrid approach to condensate fluctuations.

Phys Rev Lett

Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843, USA.

Published: November 2006

We present a new method of calculating the distribution function and fluctuations for a Bose-Einstein condensate (BEC) of N interacting atoms. The present formulation combines our previous master equation and canonical ensemble quasiparticle techniques. It is applicable both for ideal and interacting Bogoliubov BEC and yields remarkable accuracy at all temperatures. For the interacting gas of 200 bosons in a box we plot the temperature dependence of the first four central moments of the condensate particle number and compare the results with the ideal gas. For the interacting mesoscopic BEC, as with the ideal gas, we find a smooth transition for the condensate particle number as we pass through the critical temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.190402DOI Listing

Publication Analysis

Top Keywords

condensate particle
8
particle number
8
ideal gas
8
condensation interacting
4
interacting bosons
4
bosons hybrid
4
hybrid approach
4
condensate
4
approach condensate
4
condensate fluctuations
4

Similar Publications

The ability of particles to transform absorbed energy into translational movements brings peculiar order into nonequilibrium matter. Connected together into a chain, these particles collectively behave completely differently from well-known equilibrium polymers. Examples of such systems vary from nanoscale to macroscopic objects.

View Article and Find Full Text PDF

Nonvolatile Ferroic and Topological Phase Control under Nonresonant Light.

J Phys Chem Lett

December 2024

Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

Light-matter interaction is a long-standing promising topic that can be dated back to a few centuries ago and has witnessed the long-term debate between the particle and wave nature of light. In modern condensed matter physics and materials science, light usually serves as a detection tool to effectively characterize the physical and chemical features of samples. The light modulation on intrinsic properties of materials, such as atomic geometries, electronic bands, and magnetic behaviors, is more intriguing for information control and storage.

View Article and Find Full Text PDF

We theoretically investigate how the intranuclear environment influences the charge of a nucleosome core particle (NCP)-the fundamental unit of chromatin consisting of DNA wrapped around a core of histone proteins. The molecular-based theory explicitly considers the size, shape, conformation, charge, and chemical state of all molecular species-thereby linking the structural state with the chemical/charged state of the system. We investigate how variations in monovalent and divalent salt concentrations, as well as pH, affect the charge distribution across different regions of an NCP and quantify the impact of charge regulation.

View Article and Find Full Text PDF

Onsager variational principle for granular fluids.

Phys Rev E

November 2024

GRASP, Institute of Physics B5a, University of Liège, B4000 Liège, Belgium.

Granular fluids, as defined by a collection of moving solid particles, is a paradigm of a dissipative system out of equilibrium. Inelastic collisions between particles is the source of dissipation, and is the origin of a transition from a gas to a liquidlike state. This transition can be triggered by an increase of the solid fraction.

View Article and Find Full Text PDF

Discrete element method model of soot aggregates.

Phys Rev E

November 2024

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07103, USA.

Soot aerosols emitted during combustion can affect climate by scattering and absorbing the sunlight. Individual soot particles are fractal aggregates composed of elemental carbon. In the atmosphere, these aggregates acquire coatings by condensation and coagulation, resulting in significant compaction of the aggregates that changes the direct climate forcing of soot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!