It is shown that the Bragg glass phase can become unstable with respect to planar crystal defects as twin or grain boundaries. A single defect plane that is oriented parallel to the magnetic field as well as to one of the main axis of the Abrikosov flux line lattice is always relevant, whereas we argue that a plane with higher Miller index is irrelevant, even at large defect potentials. A finite density of parallel defects with random separations can be relevant even for larger Miller indices. Defects that are aligned with the applied field restore locally the flux density oscillations which decay algebraically with distance from the defect. The current-voltage relation is changed to lnV(J) approximately -J(-1). The theory exhibits striking similarities to the physics of Luttinger liquids with impurities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.97.177002 | DOI Listing |
The rigid Fabry-Pérot (F-P) cavity has emerged as the preferred core sensing component for optical pressure, vibration, and acoustic sensing in harsh environments, owing to its high reliability and structural stability. However, due to the inadequate temperature resistance of the optical dielectric film, maintaining a high level of precision in the rigid F-P cavity at elevated temperatures proves to be challenging. Volume Bragg grating (VBG) is a three-dimensional optical element modified by a femtosecond laser within a transparent glass medium to create a periodic refractive index distribution.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
In this paper, fiber Bragg gratings (FBGs) are inscribed in Tm-doped fluorotellurite glass fiber (TDFTF) and applied to construction of a 2.3-µm all-fiber laser. The FBGs with a center wavelength of 2.
View Article and Find Full Text PDFWe report a strength-enhanced waveguide second-order line-Bragg grating (WLBG) directly written with femtosecond laser in bulk glass by using "offset" to exploit the slow-light effect. This design eschews the use of multiple waveguides and/or waveguide bundles for light guiding. Instead, it only employs a single-laser-pass waveguide (SLPWG) with a refractive index change of 1.
View Article and Find Full Text PDFThe thermal sensitivity of fiber Bragg gratings (FBGs) is extensively employed in diverse industrial and scientific applications. FBGs lie at the core of flexible, low-cost, and highly precise sensors, featuring stability in harsh environments and distributed sensing capability. This study assesses the thermal properties of FBGs in fluoride fibers within a temperature range of 4-373 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!