Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.97.175003 | DOI Listing |
Sci Rep
February 2019
Beijing National Research Center of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China.
Ultra-fast synchrotron radiation emission can arise from the transverse betatron motion of an electron in a laser plasma wakefield, and the radiation spectral peak is limited to tens of keV. Here, we present a new method for achieving high-energy radiation via accelerated electrons wiggling in an additional laser field whose intensity is one order of magnitude higher than that for the self-generated transverse field of the bubble, resulting in an equivalent wiggler strength parameter K increase of approximately twenty times. By calculating synchrotron radiation, we acquired a peak brightness for the case of the laser wiggler field of 1.
View Article and Find Full Text PDFPhys Rev Lett
March 2018
Helmholtz-Institut Jena, 07743 Jena, Germany.
A flexible gamma-ray radiation source based on the resonant laser-plasma wakefield wiggler is proposed. The wiggler is achieved by inducing centroid oscillations of a short laser pulse in a plasma channel. Electrons (self-)injected in such a wakefield experience both oscillations due to the transverse electric fields and energy gain due to the longitudinal electric field.
View Article and Find Full Text PDFJ Synchrotron Radiat
March 2018
Department of Physics, University of Guilan, Rasht 41335-1914, Iran.
The quantum regime of a plasma-whistler-wave-pumped free-electron laser (FEL) in the presence of an axial-guide magnetic field is presented. By quantizing both the plasma whistler field and axial magnetic field, an N-particle three-dimensional Hamiltonian of quantum-FEL (QFEL) has been derived. Employing Heisenberg evolution equations and introducing a new collective operator which controls the vertical motion of electrons, a quantum dispersion relation of the plasma whistler wiggler has been obtained analytically.
View Article and Find Full Text PDFSci Rep
July 2016
IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 10(22)-10(23) photons/s/mm(2)/mrad(2)/0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance.
View Article and Find Full Text PDFLight Sci Appl
January 2016
Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
Synchrotron radiation (SR) sources are immensely useful tools for scientific researches and many practical applications. Currently, the state-of-the-art synchrotrons rely on conventional accelerators, where electrons are accelerated in a straight line and radiate in bending magnets or other insertion devices. However, these facilities are usually large and costly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!