Signatures for Majorana neutrinos at hadron colliders.

Phys Rev Lett

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA.

Published: October 2006

The Majorana nature of neutrinos may only be experimentally verified via lepton-number violating processes involving charged leptons. We explore the Delta L = 2 like-sign dilepton production at hadron colliders to search for signals of Majorana neutrinos. We find significant sensitivity for resonant production of a Majorana neutrino in the mass range of 10-80 GeV at the current run of the Tevatron with 2 fb(-1) integrated luminosity and in the range of 10-400 GeV at the CERN LHC with 100 fb(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.171804DOI Listing

Publication Analysis

Top Keywords

majorana neutrinos
8
hadron colliders
8
signatures majorana
4
neutrinos hadron
4
colliders majorana
4
majorana nature
4
nature neutrinos
4
neutrinos experimentally
4
experimentally verified
4
verified lepton-number
4

Similar Publications

Sensitivity Challenge of the Next-Generation Bolometric Double-Beta Decay Experiment.

Research (Wash D C)

December 2024

Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China.

Cryogenic crystal bolometer plays a crucial role in searching for neutrinoless double-beta (0νββ) decay, which is a rare process that could determine the Majorana nature of neutrinos. The flagship bolometer experiment-CUORE (Cryogenic Underground Observatory for Rare Events)-operating at the Gran Sasso underground laboratory [Laboratori Nazionali del Gran Sasso (LNGS)] as the world's first ton-scale bolometric detector has achieved great success and well demonstrated advantages of the bolometric technology for the 0νββ study. The proposed upgrade of CUORE-the CUPID project-aims to achieve higher sensitivity with orders of magnitude background reduction by utilizing scintillating crystals and dual readout technology to exclude most of the background events dominated by alpha particles.

View Article and Find Full Text PDF

Majorana quasiparticles and topological phases in 3D active nematics.

Proc Natl Acad Sci U S A

December 2024

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.

View Article and Find Full Text PDF

The imaging of individual Ba ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba ion imaging inside a high-pressure xenon gas environment. Ba ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm located inside 10 bar of xenon gas.

View Article and Find Full Text PDF

Current bounds on the neutrino Majorana mass are affected by significant uncertainties in the nuclear calculations for neutrinoless double-beta decay. A key issue for a data-driven improvement of the nuclear theory is the actual value of the axial coupling constant g_{A}, which can be investigated through forbidden β decays. We present the first measurement of the 4th-forbidden β decay of ^{115}In with a cryogenic calorimeter based on indium iodide.

View Article and Find Full Text PDF

Neutrino mass and mixing with modular symmetry.

Rep Prog Phys

July 2024

Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom.

This is a review article about neutrino mass and mixing and flavour model building strategies based on modular symmetry. After a brief survey of neutrino mass and lepton mixing, and various Majorana seesaw mechanisms, we construct and parameterise the lepton mixing matrix and summarise the latest global fits, before discussing the flavour problem of the Standard Model. We then introduce some simple patterns of lepton mixing, introduce family (or flavour) symmetries, and show how they may be applied to direct, semi-direct and tri-direct CP models, where the simple patterns of lepton mixing, or corrected versions of them, may be enforced by the full family symmetry or a part of it, leading to mixing sum rules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!