Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The hyperfine interaction of phosphorus donors in fully strained Si thin films grown on virtual Si(1-x)Ge(x) substrates with x< or =0.3 is determined via electrically detected magnetic resonance. For highly strained epilayers, hyperfine interactions as low as 0.8 mT are observed, significantly below the limit predicted by valley repopulation. Within a Green's function approach, density functional theory shows that the additional reduction is caused by the volume increase of the unit cell and a relaxation of the Si ligands of the donor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.97.166402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!