Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We consider the interaction of multivalent counterions with spherical polyelectrolyte brushes (SPB). The SPB result if linear polyelectrolyte (PE) chains (contour length: 60 nm) are densely grafted to colloidal spheres of 116 nm in diameter. Dispersed in water, the surface layer consisting of chains of the strong PE poly(styrene sulfonic acid) (PSS) will swell. We demonstrate that successive addition of trivalent ions (La3+) leads to a collapse in which the surface layer is shrinking drastically. All findings are discussed on the base of a theoretical mean-field approach using the Donnan equilibrium. The ion exchange and a strong binding of trivalent ions by PE chains is followed up by a drop in the osmotic pressure inside the brush. This reduction is the driving force for the collapse. The strong ion-chain correlation is discussed with results obtained from molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.97.158301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!