The transition from surface to bulk normal dielectric rolls in a nematic liquid crystal is imaged by fluorescence confocal polarizing microscopy. The three-dimensional director structure and the liquid flow are scanned in both the layer plane and the transverse plane. Two systems of small-scale convective flow are formed, one at each electrode. Strong anchoring makes director oscillations difficult and charges accumulate by the Carr-Helfrich mechanism. The middle region is a structureless convection where the director oscillates with the frequency of the applied voltage. The small-scale flow eventually fills the cell from one electrode to the other as one system of thin and elongated rolls. The true dielectric mode is not a director pattern, rather a surface flow instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.74.041702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!