A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.

J Biomech Eng

Department of Biomedical Engineering and Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.

Published: December 2006

The penetration method allows for the efficient finite element simulation of contact between soft hydrated biphasic tissues in diarthrodial joints. Efficiency of the method is achieved by separating the intrinsically nonlinear contact problem into a pair of linked biphasic finite element analyses, in which an approximate, spatially and temporally varying contact traction is applied to each of the contacting tissues. In Part I of this study, we extended the penetration method to contact involving nonlinear biphasic tissue layers, and demonstrated how to derive the approximate contact traction boundary conditions. The traction derivation involves time and space dependent natural boundary conditions, and requires special numerical treatment. This paper (Part II) describes how we obtain an efficient nonlinear finite element procedure to solve for the biphasic response of the individual contacting layers. In particular, alternate linearization of the nonlinear weak form, as well as both velocity-pressure, v-p, and displacement-pressure, u-p, mixed formulations are considered. We conclude that the u-p approach, with linearization of both the material law and the deformation gradients, performs best for the problem at hand. The nonlinear biphasic contact solution will be demonstrated for the motion of the glenohumeral joint of the human shoulder joint.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.2354203DOI Listing

Publication Analysis

Top Keywords

finite element
20
biphasic tissues
8
penetration method
8
contact traction
8
nonlinear biphasic
8
boundary conditions
8
contact
7
biphasic
6
element
5
nonlinear
5

Similar Publications

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Objective: Soft tissue defects and postoperative wound healing complications related to calcaneus fractures may result in significant morbidity. The aim of this study was to investigate whether percutaneous minimally invasive screw internal fixation (PMISIF) can change this situation in the treatment of calcaneal fractures, and aimed to explore the mechanical effects of different internal fixation methods on Sanders type III calcaneal fractures through finite element analysis.

Methods: This retrospective analysis focused on 83 patients with Sanders II and III calcaneal fractures from March 2017 to March 2022.

View Article and Find Full Text PDF

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Mechanical behavior of external root resorption cavities restored with different materials: a 3D-FEA study.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.

Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).

Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.

View Article and Find Full Text PDF

Carbon dioxide capture underpins an important range of technologies that can help to mitigate climate change. Improved carbon capture technologies that are driven by electrochemistry are under active development, and it was recently found that supercapacitor energy storage devices can reversibly capture and release carbon dioxide. So-called supercapacitive swing adsorption (SSA) has several advantages over traditional carbon dioxide capture technologies such as lower energy consumption and the use of nontoxic materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!