(H2O)10 and (H2O)12 on a virtual metal surface: the growth of ice.

Langmuir

Universität Hamburg, Institut für Physikalische Chemie, Martin-Luther-King Platz 6, D-20146 Hamburg, Germany.

Published: December 2006

(H2O)10 and (H2O)12 are used to investigate the growth of ice on metal surfaces with hexagonal symmetry. The model of the virtual metal surface was used to separate the electronic structure of the metal from that of the water cluster while maintaining the geometric constraints imposed by the metal surface on the water cluster. To complement the ab initio calculations on the water cluster, an additional multicenter analysis was done to analyze the hydrogen bonds within the clusters. These calculations suggested that the water bilayer structure adjacent to the virtual metal surface effectively shields the growing ice crystal from the metal surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0603471DOI Listing

Publication Analysis

Top Keywords

metal surface
20
virtual metal
12
water cluster
12
h2o10 h2o12
8
growth ice
8
metal
7
surface
5
h2o12 virtual
4
surface growth
4
ice h2o10
4

Similar Publications

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.

View Article and Find Full Text PDF

Piezoelectric catalysis possesses the potential to convert ocean wave energy into and holds broad prospects for extracting uranium from seawater. Herein, the Z-type ZnO@COF heterostructure composite with excellent piezoelectric properties was synthesized through in situ growth of covalent organic frameworks (COFs) on the surface of ZnO and used for efficient uranium extraction. The designed COFs shell enables ZnO with stability, abundant active sites and high-speed electron transport channels.

View Article and Find Full Text PDF

One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.

View Article and Find Full Text PDF

Structural Basis of Ultralow Capacitances at Metal-Nonaqueous Solution Interfaces.

J Am Chem Soc

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!