Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanical properties, phase composition, and molecular motions of thermally processed wheat gluten- (WG-) based natural polymer materials were studied by mechanical testing, dynamic mechanical analysis (DMA), and solid-state NMR spectroscopy. The performance of the materials was mainly determined by the denaturization and cross-linking occurring in the thermal processing and the nature or amount of plasticizers used. The pH effect also played an important role in the materials when water was used as the only plasticizer (WG-w). Alkaline conditions modified the chemical structure of WG, possibly via deamidation; enhanced the thermal cross-linking of WG macromolecules to form a more stable aggregation structure; and promoted intermolecular interactions between water and all components in WG (proteins, starch, and lipid), resulting in a strong adhesion among different components and phases. The saponification of lipid under alkaline conditions also enhanced the hydrophilicity of lipid and the miscibility among lipid, water, and WG components. However, when glycerol was used with water as a plasticizer (WG-wg), the phase mobility and composition of the materials mainly depended on the content of glycerol when the water content was constant. During thermal processing under either acidic or alkaline conditions, glycerol was unlikely to thermally cross-link with WG as suggested previously. The advanced mechanical performance of the WG-wg materials was attributed to the nature of hydrogen-bonding interactions between glycerol and WG components in the materials. This caused the whole material to behave like a strengthened "cross-linked" structure at room temperature due to the low mobility of glycerol. The pH effect on phase mobility and compositions of WG-wg systems was not as significant as that for WG-w materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm0604698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!