VEGF is a potent pro-angiogenic factor whose effects are opposed by a host of anti-angiogenic proteins, including thrombospondin-1 (TSP-1). We have previously shown that VEGF has important extravascular roles in the ovary and that VEGF and TSP-1 are inversely expressed throughout the ovarian cycle. To date, however, a causal interaction between TSP-1 and VEGF has not been identified. Here, we show that TSP-1 has a direct inhibitory effect on VEGF by binding the growth factor and internalizing it via LRP-1. Mice lacking TSP-1 are subfertile and exhibited ovarian hypervascularization and altered ovarian morphology. Treatment of ovarian cells with TSP-1 decreased VEGF levels and rendered the cells more susceptible to TNFalpha-induced apoptosis. Knockdown of TSP-1, through RNA interference, resulted in overexpression of VEGF and reduced cytokine-induced apoptosis. In conclusion, we demonstrate a direct inhibitory effect of TSP-1 on VEGF in the ovary. TSP-1's regulation of VEGF appears to be an important mediator of ovarian angiogenesis and follicle development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412056 | PMC |
http://dx.doi.org/10.1002/jcp.20904 | DOI Listing |
Unlabelled: We recently reported that resistance trained (T, n=10) and untrained (UT, n=11) young adults experience vastus lateralis (VL) muscle atrophy following two weeks of disuse, and 8 weeks of recovery resistance training (RT) promotes VL hypertrophy in both participant cohorts. However, angiogenesis targets and muscle capillary number were not examined and currently no human studies that have sought to determine if disuse followed by recovery RT affects these outcomes. Thus, we examined whether disuse and/or recovery RT affected these outcomes.
View Article and Find Full Text PDFExp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China. Electronic address:
Corneal neovascularization (CNV) is a dynamically regulated process that arises due to a disruption in the equilibrium between pro-angiogenic and anti-angiogenic factors. Various cytokines are released by vascular endothelial cells and macrophages in damaged cornea, ultimately inducing CNV. The cAMP-response element-binding protein (CREB), a nuclear transcription factor, potentially impacts tumor angiogenesis by modulating the secretion of angiogenic proteins.
View Article and Find Full Text PDFIndian J Med Res
July 2024
Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey.
Radiol Oncol
September 2024
Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascularity, which depends on the process of angiogenesis and affects tumour response to treatment. Our study explored the associations between DCE-MRI parameters and the expression of plasma angiogenic factors in human papilloma virus (HPV)-negative oropharyngeal cancer, as well as their predictive value for response to concurrent chemoradiotherapy (cCRT).
Patients And Methods: Twenty-five patients with locally advanced HPV-negative oropharyngeal carcinoma were prospectively enrolled in the study.
Cancers (Basel)
August 2024
Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process in the progression and metastasis of melanoma. Recent research has highlighted the significant role of epigenetic modifications in regulating angiogenesis. This review comprehensively examines the current understanding of how epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, influence angiogenic pathways in melanoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!