To study the influence of the carbohydrate-moiety of ovalbumin on the formation of the heat-stable conformer S-ovalbumin, ovalbumin is deglycosylated with PNGase-F under native conditions. Although the enzymatic deglycosylation procedure resulted in a complete loss of the ability to bind to Concavalin A column-material, only in about 50% the proteins lost their complete carbohydrate moiety, as demonstrated by mass spectrometry and size exclusion chromatography. Thermal stability and conformational changes were determined using circular dichroism and differential scanning calorimetry and demonstrated at ambient temperature no conformational changes due to the deglycosylation. Also the denaturation temperature of the processed proteins remained the same (77.4 +/- 0.4 degrees C). After heat treatment of the processed protein at 55 degrees C and pH 9.9 for 72 h, the condition that converts native ovalbumin into the heat-stable conformer (S-ovalbumin), only the material with the intact carbohydrate moiety forms this heat-stable conformer. The material that effectively lost its carbohydrate moiety appeared fully denatured and aggregated due to these processing conditions. These results indicate that the PNGase-F treatment of ovalbumin prohibits the formation and stabilization of the heat-stable conformer S-ovalbumin. Since S-ovalbumin in egg protein samples is known to affect functional properties, this work illustrates a potential route to control the quality of egg protein ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.21264DOI Listing

Publication Analysis

Top Keywords

heat-stable conformer
20
conformer s-ovalbumin
12
carbohydrate moiety
12
ovalbumin prohibits
8
prohibits formation
8
formation heat-stable
8
conformational changes
8
egg protein
8
heat-stable
5
conformer
5

Similar Publications

Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the relationship between the characteristics of pufferfish PSTBP proteoforms and their thermal stability across four Takifugu species.
  • The researchers used methods like Western blot analysis and LC-MS/MS to confirm the heat-tolerance of these proteins, especially in T. rubripes.
  • Findings indicate that heat-stable PSTBP proteoforms are genetically conserved within the genus, enhancing our understanding of toxin transmission in seafood and its associated risks.
View Article and Find Full Text PDF

The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges.

Int J Mol Sci

May 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.

Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils).

View Article and Find Full Text PDF

Chloride intracellular ion channel (CLIC) proteins exist as both soluble and integral membrane proteins, with CLIC1 capable of shifting between two distinct structural conformations. New evidence has emerged indicating that members of the CLIC family act as moonlighting proteins, referring to the ability of a single protein to carry out multiple functions. In addition to their ion channel activity, CLIC family members possess oxidoreductase enzymatic activity and share significant structural and sequence homology, along with varying overlaps in their tissue distribution and cellular localization.

View Article and Find Full Text PDF

Soy protein particles with enhanced anti-aggregation behaviors under various heating temperatures, pH, and ionic strengths.

Food Res Int

August 2023

School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China. Electronic address:

Protein-containing food products are frequently heated during processing to passivate anti-nutritional components. However, heating also contributes to protein aggregation and gelation, which limits its application in protein-based aqueous systems. In this study, heat-stable soy protein particles (SPPs) were fabricated by preheating at 120 °C for 30 min and at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!