To study the influence of the carbohydrate-moiety of ovalbumin on the formation of the heat-stable conformer S-ovalbumin, ovalbumin is deglycosylated with PNGase-F under native conditions. Although the enzymatic deglycosylation procedure resulted in a complete loss of the ability to bind to Concavalin A column-material, only in about 50% the proteins lost their complete carbohydrate moiety, as demonstrated by mass spectrometry and size exclusion chromatography. Thermal stability and conformational changes were determined using circular dichroism and differential scanning calorimetry and demonstrated at ambient temperature no conformational changes due to the deglycosylation. Also the denaturation temperature of the processed proteins remained the same (77.4 +/- 0.4 degrees C). After heat treatment of the processed protein at 55 degrees C and pH 9.9 for 72 h, the condition that converts native ovalbumin into the heat-stable conformer (S-ovalbumin), only the material with the intact carbohydrate moiety forms this heat-stable conformer. The material that effectively lost its carbohydrate moiety appeared fully denatured and aggregated due to these processing conditions. These results indicate that the PNGase-F treatment of ovalbumin prohibits the formation and stabilization of the heat-stable conformer S-ovalbumin. Since S-ovalbumin in egg protein samples is known to affect functional properties, this work illustrates a potential route to control the quality of egg protein ingredients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.21264 | DOI Listing |
Nat Commun
December 2024
Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
Int J Mol Sci
May 2024
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils).
View Article and Find Full Text PDFBiomolecules
September 2023
School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia.
Chloride intracellular ion channel (CLIC) proteins exist as both soluble and integral membrane proteins, with CLIC1 capable of shifting between two distinct structural conformations. New evidence has emerged indicating that members of the CLIC family act as moonlighting proteins, referring to the ability of a single protein to carry out multiple functions. In addition to their ion channel activity, CLIC family members possess oxidoreductase enzymatic activity and share significant structural and sequence homology, along with varying overlaps in their tissue distribution and cellular localization.
View Article and Find Full Text PDFFood Res Int
August 2023
School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China. Electronic address:
Protein-containing food products are frequently heated during processing to passivate anti-nutritional components. However, heating also contributes to protein aggregation and gelation, which limits its application in protein-based aqueous systems. In this study, heat-stable soy protein particles (SPPs) were fabricated by preheating at 120 °C for 30 min and at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!