Future development of proteomics may be hindered by limitations in the concentration sensitivity of widespread technological approaches. The concentration sensitivity limit (CSL) of currently used approaches, like 2-DE/LC separation coupled with MS detection, etc., varies from 10(-9) to 10(-12) M. Therefore, proteomic technologies enable detection of up to 20% of the protein species present in the plasma. New technologies, like atomic force microscopy (AFM molecular detector), enable the counting of single molecules, whereas biospecific fishing can be used to capture these molecules from the biomaterial. At the same time, fishing also has thermodynamic limitations due to the reversibility of the binding. In cases where the fishing becomes irreversible, its combination with an AFM detector enables the registration of single protein molecules, and that opens up a way to lower the CSL down to the reverse Avogadro number.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200600467DOI Listing

Publication Analysis

Top Keywords

reverse avogadro
8
avogadro number
8
concentration sensitivity
8
afm fishing
4
fishing nanotechnology
4
nanotechnology reverse
4
number proteomics
4
proteomics future
4
future development
4
development proteomics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!