The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants.

Mol Plant Microbe Interact

BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland.

Published: December 2006

Cyclic di-GMP is an almost ubiquitous second messenger in bacteria that was first described as an allosteric activator of cellulose synthase but is now known to regulate a range of functions, including virulence in human and animal pathogens. Two protein domains, GGDEF and EAL, are implicated in the synthesis and degradation, respectively, of cyclic di-GMP. These domains are widely distributed in bacteria, including plant pathogens. The majority of proteins with GGDEF and EAL domains contain additional signal input domains, suggesting that their activities are responsive to environmental cues. Recent studies have demonstrated that a third domain, HD-GYP, is also active in cyclic di-GMP degradation. In the plant pathogen Xanthomonas campestris pv. campestris, a two-component signal transduction system comprising the HD-GYP domain regulatory protein RpfG and cognate sensor RpfC positively controls virulence. The signals recognized by RpfC may include the cell-cell signal DSF, which also acts to regulate virulence in X. campestris pv. campestris. Here, we review these recent advances in our understanding of cyclic di-GMP signaling with particular reference to one or more roles in the bacterial pathogenesis of plants.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-19-1378DOI Listing

Publication Analysis

Top Keywords

cyclic di-gmp
20
hd-gyp domain
8
di-gmp signaling
8
ggdef eal
8
campestris campestris
8
cyclic
5
di-gmp
5
domain cyclic
4
signaling bacterial
4
virulence
4

Similar Publications

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

biofilm is a significant virulence factor in infection. This study aimed to investigate antibacterial and antibiofilm activities of extract against . The MIC and MBC values of the extract against the isolates were 0.

View Article and Find Full Text PDF

An improved bacterial single-cell RNA-seq reveals biofilm heterogeneity.

Elife

December 2024

The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.

In contrast to mammalian cells, bacterial cells lack mRNA polyadenylated tails, presenting a hurdle in isolating mRNA amidst the prevalent rRNA during single-cell RNA-seq. This study introduces a novel method, ribosomal RNA-derived cDNA depletion (RiboD), seamlessly integrated into the PETRI-seq technique, yielding RiboD-PETRI. This innovative approach offers a cost-effective, equipment-free, and high-throughput solution for bacterial single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!