Molecular mechanisms of cardioprotection by taurine on ischemia-induced apoptosis in cultured cardiomyocytes.

Adv Exp Med Biol

Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.

Published: March 2007

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-0-387-33504-9_28DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
4
mechanisms cardioprotection
4
cardioprotection taurine
4
taurine ischemia-induced
4
ischemia-induced apoptosis
4
apoptosis cultured
4
cultured cardiomyocytes
4
molecular
1
cardioprotection
1
taurine
1

Similar Publications

Persimmon (Diospyros kaki L.) leaves are a traditional medicinal herb used for treating many infectious and inflammatory-related conditions, including wound healing. To validate its traditional use, our study evaluates the acute toxicity and wound-healing effects of methanolic extracts of Persimmon (Diospyros kaki L.

View Article and Find Full Text PDF

Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).

Genes Genomics

January 2025

Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.

Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.

View Article and Find Full Text PDF

Advances in cancer genomics and precision oncology.

Genes Genomics

January 2025

Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Background: Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division.

View Article and Find Full Text PDF

Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.

View Article and Find Full Text PDF

Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!