Plasmodium fragile continues to be investigated because of its biologic similarities to the human malaria parasite, Plasmodium falciparum. Two strains of P. fragile are available for study; one strain is able to infect mosquitoes, whereas the other strain is transmissible only by blood inoculation. The Sri Lanka strain of P. fragile was transmitted to Macaca mulatta, Macaca fascicularis, Aotus lemurinus griseimembra, Aotus nancymaae, Aotus vociferans, and Saimiri boliviensis monkeys via sporozoites that developed to maturity only in Anopheles dirus mosquitoes. The prepatent periods ranged from 12 to 35 days for macaques and from 15 to 30 days for New World monkeys after intravenous injection of sporozoites. Eight rhesus monkeys were infected with the Nilgiri strain and followed for 482 days. Parasitemia in 6 animals persisted at relatively high density through the period of observation. Erythrocyte, hematocrit, and hemoglobin values reached their lowest levels 3 wk after infection and slowly recovered; however, the values did not approach preinfection levels as long as parasitemia persisted in the monkeys. The mean corpuscular volume and corpuscular hemoglobin concentration reached their peak and lowest values, respectively, at day 38 and then returned to the preinfection level. The mean corpuscular hemoglobin value decreased to its lowest level at day 87 and then returned to preinfection level.

Download full-text PDF

Source
http://dx.doi.org/10.1645/GE-848R.1DOI Listing

Publication Analysis

Top Keywords

plasmodium fragile
8
macaca mulatta
8
corpuscular hemoglobin
8
day returned
8
returned preinfection
8
preinfection level
8
monkeys
5
studies sporozoite-induced
4
sporozoite-induced chronic
4
chronic infections
4

Similar Publications

Article Synopsis
  • HIV and malaria often occur together in the same regions, leading to co-infection that worsens the symptoms of both diseases, but the mechanisms behind this increase in severity are not well understood.
  • A pilot study in rhesus macaques treated with antiretroviral therapy (ART) aimed to explore the effects of co-infection, revealing persistent viral loads and decreased CD4+ T-cells despite treatment, along with signs of anemia and parasitemia.
  • The study also found that co-infection increased inflammatory markers and altered neutrophil behavior, suggesting that inflammation and gastrointestinal dysfunction could play key roles in the aggravated disease pathology seen in HIV and malaria co-infection.
View Article and Find Full Text PDF

Overview of spp. and Animal Models in Malaria Research.

Comp Med

August 2024

Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.

Malaria is a parasitic disease caused by protozoan species of the genus and transmitted by female mosquitos of the genus and other Culicidae. Most of the parasites of the genus are highly species specific with more than 200 species described affecting different species of mammals, birds, and reptiles. species strictly affecting humans are , , , and More recently, and other nonhuman primate plasmodia were found to naturally infect humans.

View Article and Find Full Text PDF

This study highlights the development of two lateral flow recombinase polymerase amplification assays for the diagnosis of human malaria. The lateral flow cassettes contained test lines that captured biotin-, 6-carboxyfluorescein, digoxigenin-, cyanine 5-, and dinitrophenyl-labeled amplicons. The overall process can be completed in 30 minutes.

View Article and Find Full Text PDF

Objectives: COVID-19 is a transmissible illness triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its onset in late 2019 in Wuhan city of China, it continues to spread universally, leading to an ongoing pandemic that shattered all efforts to restrain it. On the other hand, in Africa, the COVID-19 infection may be influenced by malaria coinfection.

View Article and Find Full Text PDF

Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for . So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!