Speech can be recognized by multiple acoustic cues in both frequency and time domains. These acoustic cues are often thought to be redundant. One example is the low-frequency sound component below 300 Hz, which is not even transmitted by the majority of communication devices including telephones. Here, we showed that this low-frequency sound component, although unintelligible when presented alone, could improve the functional signal-to-noise ratio (SNR) by 10-15 dB for speech recognition in noise when presented in combination with a cochlear-implant simulation. A similar low-frequency enhancement effect could be obtained by presenting the low-frequency sound component to one ear and the cochlear-implant simulation to the other ear. However, a high-frequency sound could not produce a similar speech enhancement in noise. We argue that this low-frequency enhancement effect cannot be due to linear addition of intelligibility between low- and high-frequency components or an increase in the physical SNR. We suggest a brain-based mechanism that uses the voice pitch cue in the low-frequency sound to first segregate the target voice from the competing voice and then to group appropriate temporal envelope cues in the target voice for robust speech recognition under realistic listening situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2006.883793 | DOI Listing |
Elife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.
A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.
View Article and Find Full Text PDFOtol Neurotol
January 2025
Department of Otolaryngology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.
Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!