Background: P53 and ATM are central checkpoint genes involved in the repair of DNA damage after ionising irradiation, which has been associated with risk of brain tumours. Therefore, we tested the hypothesis that polymorphisms and haplotypes in p53 and ATM could be associated with glioma and meningioma risk.

Material And Methods: Six hundred and eighty glioma cases (298 glioblastoma (GBM)), 503 meningioma cases, and 1555 controls recruited in the Nordic-UK Interphone study, were analysed in association with three polymorphisms in p53 (rs2287499, rs1042533, rs1625895) and five polymorphisms in ATM ( rs228599, rs3092992, rs664143, rs170548, rs3092993). Haplotypes were constructed using the HAPLOSTAT program.

Results: The global statistical test of glioblastoma and p53 haplotypes was p = 0.02. The haplotype analysis on glioblastoma revealed the 1-2-2 haplotype (promotor-codon72-intron 6) had a frequency of 6.1% in cases compared with 9.8% in controls (p = 0.003). The 1-2-1 haplotype was significantly more frequent in GBM cases, 10.2%, than in controls, 7.3% (p = 0.02). The haplotype analysis in ATM revealed an increased frequency of the 1-1-1-2-1 haplotype in meningioma cases (33.8%) compared with controls (30.3%) (p = 0.03). The 2-1-2-1-1 haplotype had a lower frequency in meningioma cases (36.1%) than controls (40.7%) (p = 0.009).

Conclusions: This study found both positive and negative associations of haplotypes in p53 for glioblastoma and ATM for meningioma. This study provides new data that could add to our understanding of brain tumour susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-006-9275-1DOI Listing

Publication Analysis

Top Keywords

p53 atm
12
meningioma cases
12
glioma meningioma
8
haplotypes p53
8
002 haplotype
8
haplotype analysis
8
p53
6
atm
6
meningioma
6
cases
6

Similar Publications

Mangiferin Protects Mesenchymal Stem Cells Against DNA Damage and Cellular Aging via SIRT1 Activation.

Mech Ageing Dev

January 2025

Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, Republic of Korea. Electronic address:

The protective effects of mangiferin (MAG) against etoposide- and high glucose (HG)-induced DNA damage and aging were investigated in human bone marrow-mesenchymal stem cells (hBM-MSCs). Etoposide, a topoisomerase II inhibitor, was used to induce double-strand breaks (DSBs) in hBM-MSCs, resulting in increased genotoxicity, elevated levels of the DNA damage sensor ATM and CDKN1A, and decreased levels of the aging markers H3 and H4. MAG activated AMPK and SIRT1, thus protecting against DSB-induced damage.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is a less common hematological malignancy in Indian people. It accounts for less than 5% of all leukemias. Information on genomic alteration in CLL is limited immunoglobulin heavy-chain variable region (IGHV) mutational status is considered the most reliable prognostic marker.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition.

Redox Biol

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA. Electronic address:

Metabolic pathways fuel tumor progression and resistance to stress conditions including chemotherapeutic drugs, such as DNA damage response (DDR) inhibitors. Yet, significant gaps persist in how metabolic pathways confer resistance to DDR inhibition in cancer cells. Here, we employed a metabolism-focused CRISPR knockout screen and identified genetic vulnerabilities to DDR inhibitors.

View Article and Find Full Text PDF

[Next generation sequencing (NGS)-based molecular panel analysis for metastatic prostate cancer: how often can we detect druggable mutations? : NGS for metastatic adenocarcinoma of the prostate].

Urologie

January 2025

Klinik für Urologie, Uro-Onkologie, roboter-assistierte und spezielle urologische Chirurgie, Uniklinik Köln, Kerpener Str. 62, 50927, Köln, Deutschland.

Introduction: Prostate cancer guidelines recommend molecular analysis of biomaterial following resistance to first-line systemic therapy in order to identify druggable mutations. We report on our results of molecular analysis of tissue specimens via next generation sequencing (NGS) in men with metastatic castration resistant prostate cancer (mCRPC).

Patients And Methods: In all, 311 mCRPC patients underwent NGS analysis from biopsy samples of progressive metastatic lesions or archival radical prostatectomy specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!