Regulation of the mouse Na+-dependent glutamate/aspartate transporter GLAST: putative role of an AP-1 DNA binding site.

Neurochem Res

Departamento de Genética y Biología Molecular, Cinvestav Campus Zacatenco, Apartado Postal 14-740, Mexico, D.F. 07000, Mexico.

Published: January 2007

Appropriate removal of L: -glutamate from the synaptic cleft is important for prevention of the excitotoxic effects of this neurotransmitter. The Na+-dependent glutamate/aspartate transporter GLAST is regulated in the short term, by a transporter-dependent decrease in uptake activity while in the long term, a receptor's-dependent decrease in GLAST protein levels leads to a severe reduction in glutamate uptake. The promoter region of the mouse glast gene harbors an Activator Protein-1 site (AP-1). To gain insight into the molecular mechanisms triggered by Glu-receptors activation involved in GLAST regulation, we took advantage of the neonatal mouse cerebellar prisms model. We characterized the glutamate uptake activity; the glutamate-dependent effect on GLAST protein levels and over the interaction of nuclear proteins with a mouse glast promoter AP-1 probe. A time and dose dependent decrease in transporter activity matching with a decrease in GLAST levels was recorded upon glutamate treatment. Moreover, a significant increase in glast AP-1 DNA binding was found. Pharmacological experiments established that both effects are mediated through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, favoring the notion of the critical involvement of glutamate in the regulation of its binding partners: receptors and transporters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-006-9227-3DOI Listing

Publication Analysis

Top Keywords

glast
9
na+-dependent glutamate/aspartate
8
glutamate/aspartate transporter
8
transporter glast
8
ap-1 dna
8
dna binding
8
uptake activity
8
decrease glast
8
glast protein
8
protein levels
8

Similar Publications

Microglial cell proliferation is regulated, in part, by reactive astrocyte ETB signaling after ischemic stroke.

Exp Neurol

December 2024

Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:

Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.

View Article and Find Full Text PDF

Circulating GLAST EVs are increased in amyotrophic lateral sclerosis.

Front Mol Biosci

November 2024

Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, hallmarked by the gradual deterioration of motor neurons, culminating in muscle weakness and fatal paralysis. The exact etiology of ALS remains elusive, and there is a critical need for reliable biomarkers to aid in diagnosis and monitoring of disease progression. Extracellular vesicles (EVs) have emerged as promising candidates for biomarker discovery in neurodegenerative diseases such as ALS, giving access to pathologically relevant tissues otherwise typically challenging or invasive to sample.

View Article and Find Full Text PDF

This study aimed to unravel the single tetraspanin pattern of extracellular vesicles (EVs), L1CAM and GLAST EV levels as diagnostic biomarkers to stratify people with multiple sclerosis (pwMS), specifically relapsing-remitting (RRMS) and primary progressive (PPMS). The ExoView platform was used to directly track single EVs using a clinically feasible volume of cerebrospinal fluid (CSF) and serum samples. This technology allowed us to examine the patterns of classical tetraspanin and quantify the levels of L1CAM and GLAST proteins, commonly used to immunoisolate putative neuron- and astrocyte-derived EVs.

View Article and Find Full Text PDF

Anxiety is a prominent non-motor symptom of Parkinson's disease (PD). Changes in the B-spectrum recordings in PD patients of the prefrontal cortex correlate with increased anxiety. Using a rodent model of PD, we reported alterations in glutamate synapses in the striatum and substantia nigra following dopamine (DA) loss.

View Article and Find Full Text PDF

Background: Astrocytic reactivity in substance use disorders (SUDs) has been extensively studied, yet the molecular effect of delta-9-tetrahydrocannabinol (∆9-THC, the main psychoactive compound in cannabis) on glial cells, especially astrocytes, remains poorly understood. Exploring ∆9-THC's impact on astrocytic markers can provide insight into its effects on brain functions such as homeostasis, synaptic transmission, and response to neuronal injury. This systematic review synthesizes findings from studies investigating ∆9-THC's impact on astrocytic markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!