Using neutralizing monoclonal antibodies, three categories of escape mutants were selected from a stock of wild-type infectious bursal disease virus (IBDV). Additional mutants were found, where alterations coexisted in two or three of these epitopes. Although each group of mutants had a distinct reaction pattern with neutralizing monoclonal antibodies, all types of mutants were neutralized by convalescent chicken sera to the same extent. In spite of the lack of homogeneity in these antigenic sites located on IBDV structural polypeptide VP2, all neutralizing monoclonal antibodies reacted with epitopes in extracts prepared from the bursa of Fabricius from animals that had died during recent outbreaks of infectious bursal disease in the F.R.G. and Africa. Since binding to VP2 of the escape mutants, demonstrable by immunoprecipitation, correlated with the neutralizing capacity of these antibodies, a combined immunoprecipitation-immunoblotting technique was established as equivalent for a neutralization assay. The results of our experiments indicate that IBDV did not undergo a major antigenic variation in these two areas of Europe and Africa. The significance of protein conformation for the interaction of VP2 with neutralizing antibodies was underlined by the finding that renatured VP2 was capable of binding neutralizing antibodies; the antibodies induced in animals by immunization with this protein, however, were not neutralizing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01310671 | DOI Listing |
Antiviral Res
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA. Electronic address:
Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.
View Article and Find Full Text PDFVaccine
January 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:
Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored.
View Article and Find Full Text PDFFront Immunol
January 2025
Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.
Introduction: Rhesus macaques have long been a focus of research for understanding immune responses to human pathogens due to their close phylogenetic relationship with humans. As rhesus macaque antibody germlines show high degrees of polymorphism, the spectrum of database-covered genes expressed in individual macaques remains to be determined.
Methods: Here, four rhesus macaques infected with SHIV became a study of interest because they developed broadly neutralizing antibodies against HIV-1.
Nat Commun
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!