alpha-Glucosidase (JHGase I) was purified from a Japanese subspecies of eastern honeybee (Apis cerana japonica) as an electrophoretically homogeneous protein. Enzyme activity of the crude extract was mainly separated into two fractions (component I and II) by salting-out chromatography. JHGase I was isolated from component I by further purification procedure using CM-Toyopearl 650M and Sephacryl S-100. JHGase I was a monomeric glycoprotein (containing 15% carbohydrate), of which the molecular weight was 82,000. Enzyme displayed the highest activity at pH 5.0, and was stable up to 40 degrees C and in a pH-range of 4.5-10.5. JHGase I showed unusual kinetic features: the negative cooperative behavior on the intrinsic reaction on cleavage of sucrose, maltose, and p-nitrophenyl alpha-glucoside, and the positive cooperative behavior on turanose. We isolated cDNA (1,930 bp) of JHGase I, of which the deduced amino-acid sequence (577 residues) confirmed that JHGase I was a member of alpha-amylase family enzymes. Western honeybees (Apis mellifera) had three alpha-glucosidase isoenzymes (WHGase I, II, and III), in which JHGase I was considered to correspond to WHGase I.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.60302DOI Listing

Publication Analysis

Top Keywords

honeybee apis
8
apis cerana
8
cerana japonica
8
cooperative behavior
8
jhgase
7
purification characterization
4
characterization alpha-glucosidase
4
alpha-glucosidase japanese
4
japanese honeybee
4
japonica molecular
4

Similar Publications

Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos.

Sci Rep

December 2024

Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.

View Article and Find Full Text PDF

Assessing the distribution and human health risks of cationic surface-active agents in honey from China.

J Hazard Mater

December 2024

State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. Electronic address:

Cationic surface-active agents (CSAAs) can persist in ambient water, be ingested by bees, and contaminate honey. Residues of CSAAs in honey remains unknown. This study measured the residual levels of five CSAAs in 271 honey samples from China using ultrahigh-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry.

View Article and Find Full Text PDF

This study explores honeybee as a food source through chemical analysis of pupa and adult stages of honeybee drones and workers ( L.). The findings reveal that drones exhibited higher protein and fat content, while workers have the highest carbohydrate levels.

View Article and Find Full Text PDF

Little is known about the potential impact of point source contamination from seed treatment pesticide residues and degradation products in waste products in treated seed. The presence of these pesticides and their degradation products in the environment has been associated with toxic effects on non-target organisms including bees, aquatic organisms and humans. In this study, we investigated the occurrence of twenty-two pesticide residues and their degradation products in two streams receiving runoff from land-applied wet cake, applied and spilled wastewater originating at a biofuels production facility using pesticide-treated seed as a feedstock.

View Article and Find Full Text PDF

Due to the increase in data rate in mobile communication and the widespread use of mobile internet, electromagnetic communication systems are increasing daily. This situation causes increases in the use of more mobile communication devices and environmental non-ionizing Electromagnetic Field (EMF) levels. The rise of bee deaths and colony losses in beekeeping parallel to the increase of the EMF sources cause the concept of "electromagnetic pollution" to be considered among the reasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!