The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800613PMC
http://dx.doi.org/10.1534/genetics.106.067850DOI Listing

Publication Analysis

Top Keywords

nonhomologous joining
8
schizosaccharomyces pombe
8
double-strand breaks
8
xlf1 required
4
required dna
4
dna repair
4
repair nonhomologous
4
joining schizosaccharomyces
4
pombe accurate
4
accurate repair
4

Similar Publications

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.

View Article and Find Full Text PDF

Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha.

Microb Cell Fact

January 2025

National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Background: Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved.

View Article and Find Full Text PDF

Cernunnos/XLF deficiency is a rare, severe combined immunodeficiency, inherited in an autosomal recessive pattern (OMIM number: 611290), related to the NHEJ1 gene. This gene participates in the DNA non-homologous end-joining pathway, repairing double-strand breaks in the DNA of mammalian cells. The clinical features include growth retardation, microcephaly, triangle-shaped face, recurrent infections, fibroblast's excessive sensitivity to gamma-ionizing radiation, and hypogammaglobulinemia; also, low counts of subpopulations of B and T lymphocytes, with normal values of natural-killer cells.

View Article and Find Full Text PDF

A dual role of Cohesin in DNA DSB repair.

Nat Commun

January 2025

Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!