The yeast reverse two-hybrid method was developed to identify mutations disrupting protein-protein interactions. Adoption of the method has been slow, in large part, due to the high frequency of truncation and frameshift mutants typically observed with current protocols. We have developed a new strategy, based on in vitro recombinational cloning and full-length selection in Escherichia coli, to eliminate this background and dramatically increase the efficiency of the reverse two-hybrid protocol. The method was tested by generating an allele library of MyoD1 and selecting for alleles with defective interaction with Id1. Our results confirm that most of the interaction-defective alleles contain a single point mutation in the known interaction domain, the basic helix-loop-helix region. Moreover analysis of the crystal structure of MyoD reveals that the majority of these mutations occurred at the interaction interface. The results obtained using this novel approach for allele library generation demonstrate a significant advancement in the application of yeast reverse two-hybrid screens. Furthermore this method is applicable to any loss-of-function mutant screen where truncated proteins are a source of high background.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/mcp.T600023-MCP200 | DOI Listing |
J Mol Biol
January 2025
Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, 28029 Madrid, Spain. Electronic address:
A key step in autophagy is the conjugation by the E3-like Atg12-Atg5-Atg16 complex of the ubiquitin-like protein Atg8 to phosphatidylethanolamine on the autophagosomal membrane, a process known as lipidation. Previous work in yeast showed that recruitment of the E3-like complex to the preautophagosomal structure is mediated by the interaction of Atg16 with the phosphatidylinositol 3-phosphate-binding protein Atg21, and by the association of Atg12 with the scaffold protein of the Atg1 kinase complex, Atg17. Here, we conducted a reverse two-hybrid screen to identify residues in Atg17 and Atg12 critical for Atg17-Atg12 binding, and used these data to generate a docking model of Atg12-Atg5-Atg16 with the Atg17 complex.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
November 2024
State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
Increased glycolytic metabolism is a key step in the reproduction of and the induction of brucellosis, however, little is known about how this process is regulated during infection. Forkhead box protein O1 (FOXO1) is a transcription factor that regulates energy metabolism. In this study, we employ the yeast two-hybrid system (Y2H) and immunoprecipitation (Co-IP) to reverse screen for the FOXO1 for the first time and identify interactions between FOXO1 and the secretory protein VceA.
View Article and Find Full Text PDFGenes (Basel)
September 2024
School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China.
Background/objectives: Nitrogen is an essential macroelement for plant growth and productivity. Calcium (Ca) acts as a critical second messenger in numerous adaptations and developmental processes in plants. The Calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway has been demonstrated to be involved in multiple intracellular ion homeostasis of plants in response to stresses.
View Article and Find Full Text PDFmBio
November 2024
Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.
We previously reported that hepatitis C virus (HCV) infection or HCV core protein expression induces HOX gene expression by impairing histone H2A monoubiquitination via a proteasome-dependent reduction in the level of RNF2, a key catalytic component of polycomb repressive complex 1 (H. Kasai, K. Mochizuki, T.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:
The heat shock protein 90 (HSP90) family members are not only widely involved in animal cellular immune response and signal transduction pathway regulation, but also play an important role in plant development and environmental stress response. Here,we identified a HSP90 family member in Ginkgo biloba, designated as GbHSP90, which performs a dual functional role to regulate telomere stability. GbHSP90 was screened by a yeast one-hybrid library using the Ginkgo biloba telomeric DNA (TTTAGGG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!