Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4.

J Biol Chem

Department of Molecular Cell Biology, Biocenter of the Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany.

Published: February 2007

AI Article Synopsis

Article Abstract

Unlike other eukaryotes, plants possess a complex family of heat stress transcription factors (Hsfs) with usually more than 20 members. Among them, Hsfs A4 and A5 form a group distinguished from other Hsfs by structural features of their oligomerization domains and by a number of conserved signature sequences. We show that A4 Hsfs are potent activators of heat stress gene expression, whereas A5 Hsfs act as specific repressors of HsfA4 activity. The oligomerization domain of HsfA5 alone is necessary and sufficient to exert this effect. Due to the high specificity of the oligomerization domains, other class A Hsfs are not affected. Pull-down assay and yeast two-hybrid interaction tests demonstrate that the tendency to form HsfA4/A5 heterooligomers is stronger than the formation of homooligomers. The specificity of interaction between Hsfs A4 and A5 was confirmed by bimolecular fluorescence complementation experiments. The major role of the representatives of the HsfA4/A5 group, which are not involved in the conventional heat stress response, may reside in cell type-specific functions connected with the control of cell death triggered by pathogen infection and/or reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M609545200DOI Listing

Publication Analysis

Top Keywords

heat stress
16
stress transcription
8
oligomerization domains
8
hsfs
7
role heat
4
stress
4
transcription factor
4
factor hsfa5
4
hsfa5 specific
4
specific repressor
4

Similar Publications

With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.

View Article and Find Full Text PDF

Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.

View Article and Find Full Text PDF

RP-HPLC technique was developed and optimized for simultaneous identification and estimation of nirmatrelvir (NIR) and ritonavir (RIT) in their new copackaged tablet. Stability of nirmatrelvir (NIR) was studied after exposure to different five stress conditions; alkali, acid, heat, photo and oxidation degradation. The chromatographic separation was achieved using VDSpher PUR 100 ODS (4.

View Article and Find Full Text PDF

Drought and heat stress significantly limit crop growth and productivity. Their simultaneous occurrence, as often observed in summer crops, leads to larger yield losses. Sorghum is well adapted to dry and hot conditions.

View Article and Find Full Text PDF

Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!