Ab initio calculations were carried out to characterize the structure and energetic of silver cation (Ag (I)) complex with cytosine (C:Ag:C) and mercury cation (Hg (II)) complex with thymine (T:Hg:T) systems. These metal-modified mismatch base pairs have been optimized using Hatree-Fock method without any symmetry constrains. Using above methods, the models of Ag (I) in a crosslink between O2 carbonyl oxygen of cytosine, O2(C):Ag:O2(C), and Hg (II) in a crosslink between N3 nitrogen atom of thymine, N3(T):Hg:N3(T) were obtained. Furthermore, the interaction energies of C:Ag:C and T:Hg:T models were estimated. The result showed that the coordination silver (I) cation with cytosine is more stable than hydrate state.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nass/49.1.215DOI Listing

Publication Analysis

Top Keywords

mismatch base
8
silver cation
8
cation complex
8
computational evaluation
4
evaluation specific
4
specific interaction
4
cation
4
interaction cation
4
cation mismatch
4
base pair
4

Similar Publications

Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA.

View Article and Find Full Text PDF

Background: Temozolomide (TMZ), a non-classical alkylating agent, possesses lipophilic properties that allow it to cross the blood-brain barrier, making it active within the central nervous system. Furthermore, the adverse reactions of the TMZ are relatively mild, which is why it is currently recommended as a first-line chemotherapy drug for refractory pituitary adenomas (RPAs) and pituitary carcinomas (PCs).

Summary: Systematic evaluations indicate a radiological response rate of 41% and a hormonal response rate of 53%, underscoring TMZ clinical efficacy, particularly when combined with radiotherapy.

View Article and Find Full Text PDF

Role of Mutyh in Oxidative Stress Damage in Retinopathy of Prematurity.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Neonatology, Children's Hospital of Nanjing Medical University,Nanjing 210000,China.

Objective To explore the role of the base mismatch repair gene Mutyh in retinopathy of prematurity(ROP). Methods Mutyh(-/-)and wild-type(WT)mice were used for the modeling of oxygen-induced retinopathy.The retinal oxidative stress was examined,and the ultrastructures of photoreceptors and mitochondria were observed.

View Article and Find Full Text PDF

Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair.

Biomedicines

December 2024

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia.

The nervous system is susceptible to DNA damage and DNA repair defects, and if DNA damage is not repaired, neuronal cells can die, causing neurodegenerative diseases in humans. The overall picture of what is known about DNA repair mechanisms in the nervous system is still unclear. The current challenge is to use the accumulated knowledge of basic science on DNA repair to improve the treatment of neurodegenerative disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!