Thermodynamic analyses of the specific interaction between T:T mismatch base pair and mercury (II) cation: toward the efficient detection of single nucleotide polymorphism (1).

Nucleic Acids Symp Ser (Oxf)

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Published: July 2007

We examined the effect of mercury (II) cation on the thermal stability of heteroduplex and homoduplex. Addition of mercury (II) cation increased the melting temperature of heteroduplex containing T:T mismatch base pair by about 4 degrees C. The thermal stability of homoduplex and heteroduplexes containing other kinds of mismatch base pairs was not significantly changed by the addition of mercury (II) cation. Isothermal titration calorimetric study demonstrated that mercury (II) cation directly bound to T:T mismatch base pair in hcteroduplex at a molar ratio of 1:1. The binding constant and the enthalpy change for the binding of mercury (II) cation to T:T mismatch base pair was approximately 10(6) M(-1) and -6 kcal mol(-1), respectively. We conclude that mercury (II) cation directly binds to T:T mismatch base pair in heteroduplex with high affinity and specificity. Our results certainly support the idea that the addition of mercury (II) cation to T:T mismatch base pair in heteroduplex could be a convenient strategy for heteroduplex analysis and may eventually lead to progress in single nucleotide polymorphism genotyping.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nass/48.1.275DOI Listing

Publication Analysis

Top Keywords

mercury cation
32
mismatch base
28
base pair
24
addition mercury
12
mercury
8
cation
8
single nucleotide
8
nucleotide polymorphism
8
thermal stability
8
cation directly
8

Similar Publications

Novel enhancement strategy for Hg adsorption in wastewater: Nonthermal plasma-mediated advanced modification of zero-valent iron-carbon galvanic cells with thiol functionalization.

J Environ Manage

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:

Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.

View Article and Find Full Text PDF

Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.

View Article and Find Full Text PDF

Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.

View Article and Find Full Text PDF

Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization.

Polymers (Basel)

December 2024

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.

View Article and Find Full Text PDF

Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!