Drug release from functionalized oligodeoxynucleotide by photo-induced electron transfer.

Nucleic Acids Symp Ser (Oxf)

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto 615-8510, Japan.

Published: July 2007

We synthesized a photoreactive hairpin-type oligodeoxynucleotide (P-ODN) possessing an o-nitrobenzyl chromophore and a triplet quencher of 1-aminonaphthalene. Photoirradiation of the hybrid of H-ODN with its complementary DNA led to release of drug in an efficient amount, while the photo-induced drug release was remarkably suppressed in the absence of complementary DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nass/48.1.79DOI Listing

Publication Analysis

Top Keywords

drug release
8
complementary dna
8
release functionalized
4
functionalized oligodeoxynucleotide
4
oligodeoxynucleotide photo-induced
4
photo-induced electron
4
electron transfer
4
transfer synthesized
4
synthesized photoreactive
4
photoreactive hairpin-type
4

Similar Publications

PEGylation of Dipeptide Linker Improves Therapeutic Index and Pharmacokinetics of Antibody-Drug Conjugates.

Bioconjug Chem

January 2025

Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Hydrophobic payloads incorporated into antibody-drug conjugates (ADCs) typically are superior to hydrophilic ones in tumor penetration and "bystander killing" upon release from ADCs. However, they are prone to aggregation and accelerated plasma clearance, which lead to reduced efficacies and increased toxicities of ADC molecules. Shielding the hydrophobicity of payloads by incorporating polyethylene glycol (PEG) elements or sugar groups into the ADC linkers has emerged as a viable alternative to directly adopting hydrophilic payloads.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke, and the neuroprotective effects of nimodipine following SAH have been well-documented. Sirtuin 3 (SIRT3), a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, plays a significant role in mitigating oxidative stress in various neurodegenerative conditions. However, the role of SIRT3 in the neuroprotective mechanisms of nimodipine after SAH remains unclear.

View Article and Find Full Text PDF

Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.

View Article and Find Full Text PDF

The purpose of this work was to create and assess Lornoxicam (LOR) loaded Novasomes (Novas) for the efficient treatment of ulcerative colitis. The study was performed using a 2 factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: Surface Active agent (SAA) type (), LOR concentration (), and SAA: Oleic acid ratio ().

View Article and Find Full Text PDF

Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!