Diazepam binding inhibitor (DBI) and its processing products are endogenous modulators of GABAA and linked to various brain disorders ranging from anxiety and drug dependence to epilepsy. To investigate the physiological role of endogenously expressed DBI in the brain we created a transgenic mouse line overexpressing DBI gene. Transgenic mice had a 37x increased protein expression and immunohistochemistry showed excessive glial expression in the infragranular region of the dentate gyrus. Transgenic animals had significantly larger lateral ventricles and decreased plasticity of excitatory synapses without affecting either inhibitory or excitatory synaptic transmission. In behavioral tests transgenic animals had no differences in motor and exploratory activity, yet impaired hippocampus-dependent learning and memory. Overexpression did not cause anxiety or proconflict behavior, nor influenced kainic acid or pentylenetetrazole induced seizure activity. Our transgenic mouse line demonstrates that endogenously overexpressed DBI impairs hippocampus-dependent learning without anxiety or proconflict behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2006.10.013DOI Listing

Publication Analysis

Top Keywords

hippocampus-dependent learning
12
diazepam binding
8
binding inhibitor
8
plasticity excitatory
8
excitatory synapses
8
impairs hippocampus-dependent
8
transgenic mouse
8
transgenic animals
8
anxiety proconflict
8
proconflict behavior
8

Similar Publications

Background: Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway.

View Article and Find Full Text PDF

Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice.

Cell Mol Life Sci

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.

Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.

View Article and Find Full Text PDF

In humans, psychological loss, whether social or nonsocial, can lead to clinical depression, anxiety disorders, and social memory impairments. Researchers have modeled combined social and nonsocial loss in rodents by transitioning them from social, enriched environments (EE) to individual housing, affecting behaviors related to avoidance, stress coping, and cognitive function. However, it remains unclear if these effects are driven by social or nonsocial loss.

View Article and Find Full Text PDF

With increased legalization of recreational and medical cannabis, use of this drug is growing rapidly among older adults. As cannabis use can impair cognition in young adults, it is critically important to understand how consumption interacts with the cognitive profile of aged individuals, who are already at increased risk of decline. The current study was designed to determine how cannabis influences multiple forms of cognition in young adult and aged rats of both sexes when delivered via two translationally-relevant routes of administration.

View Article and Find Full Text PDF

The interaction between the main psychotropic ingredient of Cannabis, Δ⁹- tetrahydrocannabinol (THC), with the endogenous cannabinoid system (ECS) is a critical and underrated issue that deserves utmost attention. The ECS, indeed, contributes to the formation and regulation of excitatory and inhibitory (E/I) neuronal networks that in the hippocampus underly spatial memory. This study explored sex-specific consequences of prenatal exposure to THC in hippocampus-dependent memory and the underlying cellular and molecular contributors of synaptic plasticity and E/I homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!