In this paper, we present a method for the study of synchronization patterns measured from EEG scalp potentials in psychophysiological experiments. This method is based on various techniques: a time-frequency decomposition using sinusoidal filters which improve phase accuracy for low frequencies, a Bayesian approach for the estimation of significant synchrony changes, and a time-frequency-topography visualization technique which allows for easy exploration and provides detailed insights of a particular experiment. Particularly, we focus on in-phase synchrony using an instantaneous phase-lock measure. We also discuss some of the most common methods in the literature, focusing on their relevance to long-range synchrony analysis; this discussion includes a comparison among various synchrony measures. Finally, we present the analysis of a figure categorization experiment to illustrate our method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2006.10.018DOI Listing

Publication Analysis

Top Keywords

synchronization patterns
8
time-frequency-topography visualization
8
exploration event-induced
4
event-induced eeg
4
eeg phase
4
phase synchronization
4
patterns cognitive
4
cognitive tasks
4
tasks time-frequency-topography
4
visualization system
4

Similar Publications

Portable devices for periodic monitoring of bioelectrical impedance along meridian pathways in healthy individuals.

Biomed Eng Online

January 2025

Department of Cardiovascular Surgery, Division of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, No.6 of Fucheng Road, Haidian District, Beijing, 100853, China.

Objective: This study aims to investigate the monthly variation patterns of bioelectrical impedance (BEI) along 24 meridian pathways in healthy individuals.

Methods: A cohort of 684 healthy middle-aged participants from North China was enrolled between July 1, 2017, and September 5, 2020. BEI measurements were consistently recorded along the 24 meridian pathways over the study period.

View Article and Find Full Text PDF

During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.

View Article and Find Full Text PDF

In this study, we introduce a coupled fractional system consisting of two fluctuating-mass oscillators with time delay and investigate their collective resonant behaviors. First, we achieve complete synchronization between the average behaviors of these oscillators. We then derive the exact analytical expression for the output amplitude gain, and based on this, we observe generalized stochastic resonance (GSR) in the system.

View Article and Find Full Text PDF

Oxytocin and Neuroscience of Lactation: Insights from the Molecular Genetic Approach.

Neurosci Res

January 2025

RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:

In mammals, lactation is essential for the health and growth of infants and supports the formation of the mother-infant bond. Breastfeeding is mediated by the neurohormone oxytocin (OT), which is released into the bloodstream in a pulsatile manner from OT neurons in the hypothalamus to promote milk ejection into mammary ducts. While classical studies using anesthetized rats have illuminated the activity patterns of putative OT neurons during breastfeeding, the molecular, cellular, and neural circuit mechanisms driving the synchronous pulsatile bursts of OT neurons in response to nipple stimulation remain largely elusive.

View Article and Find Full Text PDF

Background/objective: : Patients with somatic symptoms are considered to have a deficiency in body-oriented mentalization; that is, the ability to perceive and interpret bodily sensations in relation to psychological states. We introduce the novel concept of psychosomatic congruence-the alignment of physical sensations with cognition and emotional states, which leads to behaviors that synchronize physical manifestations with emotional experiences and internal reflections. Despite its clinical relevance, this concept has not been empirically examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!