We report the successfull delay of leaf senescence in Medicago sativa. A highly regenerable clone of alfalfa was transformed with the construct SAG12-IPT, an approach that has already proved efficient in other crops. Several independent transformants were obtained as determined by Southern analysis and all the transformants expressed the transgene as measured by RT-PCR. In vitro and in vivo analyses showed that SAG12-IPT plants exhibited a stay-green phenotype that has the potential to greatly improve the quantity and quality of alfalfa forage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-006-0262-y | DOI Listing |
Plants (Basel)
January 2025
School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China.
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Leaf senescence is a complex developmental process that is regulated by multiple genetic and environmental factors. Understanding the mechanisms underlying the regulation of leaf senescence will provide valuable insights for manipulation of this trait in crops. Here, we report that the ATP-binding cassette (ABC) transporter OsPDR1 is involved in promoting leaf senescence in rice.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Phytopathology or Coordination, Institute of Sugar Beet Research, Göttingen, Germany.
Background: Cercospora leaf spot (CLS), caused by Cercospora beticola, is the most destructive foliar disease in sugar beet. CLS is conventionally controlled with fungicide, but the emergence of fungicide-resistant populations reinforces the importance of developing and cultivating resistant varieties. Understanding the dynamics of CLS in different varieties is hence essential for sustainable CLS management.
View Article and Find Full Text PDFEcotoxicology
January 2025
Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.
As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.
View Article and Find Full Text PDFPhysiol Plant
January 2025
KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain.
Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!