Background And Purpose: Hepatocellular carcinoma (HCC) patients with severe cirrhosis are usually treated with supportive care because of their poor prognosis. However, the survival of severe cirrhotic patients has recently improved due to advanced treatments. The aim of this study was to define the role of proton beam therapy for HCC patients with severe cirrhosis.

Patients And Methods: 19 HCC patients with Child-Pugh class C cirrhosis received proton beam therapy. The hepatic tumors were solitary in 14 patients and multiple in five, and the tumor size was 25-80 mm (median 40 mm) in maximum diameter. No patient had regional lymph node or distant metastasis. Total doses of 50-84 Gy (median 72 Gy) in ten to 24 fractions (median 16) were delivered to the tumors.

Results: Of the 19 patients, six, eight and four died of cancer, liver failure and intercurrent diseases, respectively, during the follow-up period of 3-63 months (median 17 months) after treatment. A remaining patient was alive with no evidence of disease 33 months after treatment. All but one of irradiated tumors were controlled during the follow-up period. Ten patients had new intrahepatic tumors outside the irradiated volume. The overall and progression-free survival rates were 53% and 47% at 1 year, respectively, and 42% each at 2 years. Performance status and Child-Pugh score were significant prognostic factors for survival. Therapy-related toxicity of grade 3 or more was not observed.

Conclusion: Proton beam therapy for HCC patients with severe cirrhosis was tolerable. It may improve survival for patients with relatively good general condition and liver function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233367PMC
http://dx.doi.org/10.1007/s00066-006-1564-2DOI Listing

Publication Analysis

Top Keywords

proton beam
16
beam therapy
16
patients severe
16
hcc patients
16
severe cirrhosis
12
patients
10
hepatocellular carcinoma
8
therapy hcc
8
follow-up period
8
months treatment
8

Similar Publications

The sarcoma ring trial: a case-based analysis of inter-center agreement across 21 German-speaking sarcoma centers.

J Cancer Res Clin Oncol

January 2025

Sarcoma Unit, Department of Surgery, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Purpose: The management of soft tissue sarcoma (STS) at reference centers with specialized multidisciplinary tumor boards (MTB) improves patient survival. The German Cancer Society (DKG) certifies sarcoma centers in German-speaking countries, promoting high standards of care. This study investigated the variability in treatment recommendations for localized STS across different German-speaking tertiary sarcoma centers.

View Article and Find Full Text PDF

A non-metallic PEEK topology optimization reconstruction implant for large mandibular continuity defects, validated using the MANDYBILATOR apparatus.

Sci Rep

January 2025

Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.

In cases of large mandibular continuity defects resulting from malignancy resection, the current standard of care involves using patient-specific/custom titanium reconstruction plates along with autogenous grafts (fibula, scapula, or iliac crest segments). However, when grafts are not feasible or desired, only the reconstruction plate is used to bridge the gap. Unfortunately, metal osteosynthesis and reconstruction plates, including titanium, exhibit adverse effects such as stress-shielding and limitations in accurate postoperative irradiation (especially with proton-beam therapy).

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the fundamental properties of spot-scanning proton beams and compare them to Monte Carlo (MC) simulations, both with and without CT calibration, using spatially diverse combinations of materials.

Methods: A heterogeneous phantom was created by spatially distributing titanium, wax, and thermocol to generate six scenarios of heterogeneous combinations. Proton pencil beams ranging in energy from 100 to 226.

View Article and Find Full Text PDF
Article Synopsis
  • Proton Minibeam Radiation Therapy has been promising in enhancing treatment efficacy compared to traditional radiation, but more research into its biological mechanisms is needed.
  • A mechanical collimation setup was developed to produce 250µm minibeams with a 1000µm spacing, with optimization using Monte Carlo simulations conducted at various proton therapy sites.
  • Results showed a peak-to-valley dose ratio (PVDR) of 10 in Dresden and 14 in Seattle, with some discrepancies between dosimetry methods that can be addressed with correction factors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!