A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Lupinoside prevented fatty acid induced inhibition of insulin sensitivity in 3T3 L1 adipocytes. | LitMetric

The decrease in insulin sensitivity to target tissues or insulin resistance leads to type 2 diabetes mellitus, an insidious disease threatening global health. Numerous evidences made free fatty acids (FFAs) responsible for insulin resistance and type 2 diabetes. We demonstrate here that the damage of insulin acitivity by a free fatty acid, palmitate could be prevented by a lupinoside. An incubation of 3T3 L1 adipocytes with a FFA i.e. palmitate inhibited insulin stimulated uptake of (3)H-2 deoxyglucose (2 DOG) significantly. Addition of a lupinoside purified from Pueraria tuberosa, lupinoside PA(4) (LPA(4)) strongly prevented this inhibition. We then examined insulin signaling pathway where palmitate significantly inhibited insulin stimulated phosphorylation of Insulin receptor tyrosine kinase, IRS 1and PI3 kinase, PDK1 and Akt/PKB. LPA(4) rescued this inhibition of signaling molecule by palmitate. Insulin mediated translocation of Glut4, the glucose transporter in insulin target cells, was effectively blocked by palmitate while, LPA(4) waived this block. Administration of LPA(4) to nutritionally induced diabetic rats significantly reduced the increase in plasma glucose. All these indicate LPA(4) to be a potentially therapeutic agent for insulin resistance and type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-006-9378-1DOI Listing

Publication Analysis

Top Keywords

insulin
12
insulin resistance
12
type diabetes
12
fatty acid
8
insulin sensitivity
8
3t3 adipocytes
8
free fatty
8
resistance type
8
palmitate inhibited
8
inhibited insulin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!