Abnormal brain development, induced by genetic influences or resulting from a perinatal trauma, has been recognized as a cause of seizure disorders. To understand how and when these structural abnormalities form, and how they are involved in epileptogenesis, it is important to generate and investigate animal models. We have studied one such model, a mouse in which deletion of the p35 gene (p35-/-) gives rise to both structural disorganization and seizure-like function. We now report that aberrant dentate development can be recognized in the organotypic hippocampal slice culture preparation generated from p35-/- mouse pups. In these p35-/- cultures, an abnormally high proportion of dentate granule cells migrates into the hilus and molecular layer, and develops aberrant dendritic and axonal morphology. In addition, astrocyte formation in the dentate gyrus is disturbed, as is the distribution of GABAergic interneurons. Although the p35-/- brain shows widespread abnormalities, the disorganization of the hippocampal dentate region is particularly intriguing since a similar pathology is often found in hippocampi of temporal lobe epilepsy patients. The abnormal granule cell features occur early in development, and are independent of seizure activity. Further, these aberrant patterns and histopathological features of p35-/- culture preparations closely resemble those observed in p35 knockout mice in vivo. This culture preparation thus provides an experimentally accessible window for studying abnormal developmental factors that can result in seizure propensity.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000096215DOI Listing

Publication Analysis

Top Keywords

dentate development
8
organotypic hippocampal
8
hippocampal slice
8
p35 knockout
8
knockout mice
8
culture preparation
8
dentate
5
p35-/-
5
development organotypic
4
slice cultures
4

Similar Publications

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

Microorganisms

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

: Interincisive midline deviation is frequent. Determining the cause (dental versus skeletal) is crucial for treatment planning. This study assessed the null hypothesis that neither clinical dental midline shift nor the temporomandibular disorder (TMD)-affected side correlate with maxillary/mandibular asymmetry.

View Article and Find Full Text PDF

Effects of MeCP2 on chronic seizures and cognitive function in mice with temporal lobe epilepsy.

Epilepsy Res

January 2025

Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:

Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!