Conformation state-sensitive antibodies to G-protein-coupled receptors.

J Biol Chem

Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.

Published: February 2007

A growing body of evidence indicates that G-protein-coupled receptors undergo complex conformational changes upon agonist activation. It is likely that the extracellular region, including the N terminus, undergoes activation-dependent conformational changes. We examined this by generating antibodies to regions within the N terminus of micro-opioid receptors. We find that antibodies to the midportion of the N-terminal tail exhibit enhanced recognition of activated receptors, whereas those to the distal regions do not. The enhanced recognition is abolished upon treatment with agents that block G-protein coupling or deglycosylate the receptor. This suggests that the N-terminal region of mu receptors undergoes conformational changes following receptor activation that can be selectively detected by these region-specific antibodies. We used these antibodies to characterize micro receptor type-specific ligands and find that the antibodies accurately differentiate ligands with varying efficacies. Next, we examined if these antibodies can be used to investigate the extent and duration of activation of endogenous receptors. We find that peripheral morphine administration leads to a time-dependent increase in antibody binding in the striatum and prefrontal cortex with a peak at about 30 min, indicating that these antibodies can be used to probe the spatio-temporal dynamics of native mu receptors. Finally, we show that this strategy of targeting the N-terminal region to generate receptor conformation-specific antisera can be applied to other G(alpha)(i)-coupled (delta-opioid, CB1 cannabinoid, alpha(2A)-adrenergic) as well as G(alpha)(s)-(beta(2)-adrenergic) and G(alpha)(q)-coupled (AT1 angiotensin) receptors. Taken together, these studies describe antisera as tools that allow, for the first time, studies probing differential conformation states of G-protein-coupled receptors, which could be used to identify molecules of therapeutic interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856726PMC
http://dx.doi.org/10.1074/jbc.M609254200DOI Listing

Publication Analysis

Top Keywords

g-protein-coupled receptors
12
conformational changes
12
receptors
9
antibodies
8
receptors find
8
find antibodies
8
enhanced recognition
8
n-terminal region
8
conformation state-sensitive
4
state-sensitive antibodies
4

Similar Publications

Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient.

View Article and Find Full Text PDF

The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis.

View Article and Find Full Text PDF

Dysregulated autoantibodies targeting AGTR1 are associated with the accumulation of COVID-19 symptoms.

NPJ Syst Biol Appl

January 2025

BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.

Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.

View Article and Find Full Text PDF

The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!