Stabilization of cytoplasmic beta-catenin is a hallmark of a variety of cancers. The stabilized beta-catenin is able to translocate to the nucleus, where it acts as a transcriptional activator of T-cell factor (TCF)-regulated genes. beta-Catenin may cross-talk with many signalling cascades to activate target genes. Whether beta-catenin cooperates with AP-1, another transcriptional complex activated during tumorigenesis is not fully clarified. We show that beta-catenin co-immunoprecipitates with c-Jun and c-Fos. GST pull-down experiments indicate a physical association of the armadillo repeat domain of beta-catenin with the DNA-binding domain of c-Jun and of the C-terminal domain of beta-catenin with the N-terminal domain of c-Fos. Promoter studies indicate that overexpression of AP-1 activates the transcription of two beta-catenin target genes, cyclin D1 and c-myc, by a mechanism independent of the AP-1 site, and fully dependent on the TCF-binding site. We further demonstrate that AP-1/beta-catenin synergism is involved during serum-induced cyclin D1 transcriptional activation. We identify a TCF-binding site on the cyclin D1 promoter which binds in vivo a complex induced by serum, containing beta-catenin, TCF4, c-Fos, c-Jun, JunB and JunD. This novel mechanism of interaction between two signalling cascades might contribute to the potentiation of malignancy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1210133DOI Listing

Publication Analysis

Top Keywords

beta-catenin
10
genes beta-catenin
8
signalling cascades
8
target genes
8
domain beta-catenin
8
tcf-binding site
8
physical functional
4
functional cooperation
4
ap-1
4
cooperation ap-1
4

Similar Publications

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.

View Article and Find Full Text PDF

Liver cancer, and in particular hepatocellular carcinoma (HCC) is a disease of rising prevalence and incidence. To date, definitive treatment options include either surgical excision or ablation of the affected area. With increasing research on several pathways that could be involved in the progression of HCC, new elements within these pathways emerge as potential targets for novel therapies.

View Article and Find Full Text PDF

Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally, and effective treatments are urgently needed. The present study aimed to investigate the inhibitory effect of Calculus Bovis (CB) on liver cancer and the underlying mechanisms. CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway, thereby suppressing the proliferation of liver cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!