Background: The purpose of our study was to evaluate the effects of urban pollution on the lipid balance of members of a municipal police force in a big city.

Subjects And Methods: Our case-control study comprised 118 male members of the police force performing traffic duties, and 118 blood donors who perform office work, and was paired by age and length of service. Total cholesterol, HDL and triglycerides were studied.

Results: The comparison of the average values of HDL cholesterol and triglycerides between the exposed traffic police group and the control group showed significant differences. The difference in the frequency distributions of HDL cholesterol and triglycerides between the exposed group and control group was significant as well. The results suggest the possibility of an alteration in the lipid balance among asymptomatic people who are exposed to air pollution.

Conclusion: The results suggest that some chemical agents (such as carbon dioxide) contained in the urban pollution of a big city could cause dyslipidemia among people exposed to such air pollution.

Download full-text PDF

Source
http://dx.doi.org/10.5144/0256-4947.2002.287DOI Listing

Publication Analysis

Top Keywords

lipid balance
12
air pollution
8
pollution lipid
8
traffic police
8
urban pollution
8
police force
8
hdl cholesterol
8
cholesterol triglycerides
8
triglycerides exposed
8
group control
8

Similar Publications

Antioxidant treatment attenuates age-related placenta GLUT-1 and PLIN-2 downregulation.

Placenta

December 2024

Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Medicina Veterinária da Universidade Lusófona e Instituto Politécnico da Lusofonia, COFAC - Cooperativa de Formação e Animação Cultural, C.R.L., Campo Grande 376, 1749-024, Lisboa, Portugal; Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:

Background And Aim: Pregnancy after the age of 35 is correlated with an increased risk of impaired placentation and the development of pregnancy-associated complications. Changes in uterine redox balance seem to play a role in these settings. In this work, we hypothesized that local redox dysregulation impacts the placenta metabolic profile.

View Article and Find Full Text PDF

encodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic variants have been identified in congenital disorders of glycosylation and somatic variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive.

View Article and Find Full Text PDF

Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health.

View Article and Find Full Text PDF

Polymers for mRNA Delivery.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.

mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology.

View Article and Find Full Text PDF

Ferroptosis and autophagy are two main forms of regulated cell death (RCD). Ferroptosis is a newly identified RCD driven by iron accumulation and lipid peroxidation. Autophagy is a self-degradation system through membrane rearrangement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!