Influenza virus pleiomorphy characterized by cryoelectron tomography.

Proc Natl Acad Sci U S A

Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Published: December 2006

Influenza virus remains a global health threat, with millions of infections annually and the impending threat that a strain of avian influenza may develop into a human pandemic. Despite its importance as a pathogen, little is known about the virus structure, in part because of its intrinsic structural variability (pleiomorphy): the primary distinction is between spherical and elongated particles, but both vary in size. Pleiomorphy has thwarted structural analysis by image reconstruction of electron micrographs based on averaging many identical particles. In this study, we used cryoelectron tomography to visualize the 3D structures of 110 individual virions of the X-31 (H3N2) strain of influenza A. The tomograms distinguish two kinds of glycoprotein spikes [hemagglutinin (HA) and neuraminidase (NA)] in the viral envelope, resolve the matrix protein layer lining the envelope, and depict internal configurations of ribonucleoprotein (RNP) complexes. They also reveal the stems that link the glycoprotein ectodomains to the membrane and interactions among the glycoproteins, the matrix, and the RNPs that presumably control the budding of nascent virions from host cells. Five classes of virions, four spherical and one elongated, are distinguished by features of their matrix layer and RNP organization. Some virions have substantial gaps in their matrix layer ("molecular fontanels"), and others appear to lack a matrix layer entirely, suggesting the existence of an alternative budding pathway in which matrix protein is minimally involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1748186PMC
http://dx.doi.org/10.1073/pnas.0607614103DOI Listing

Publication Analysis

Top Keywords

matrix layer
12
influenza virus
8
cryoelectron tomography
8
spherical elongated
8
matrix protein
8
matrix
6
influenza
4
virus pleiomorphy
4
pleiomorphy characterized
4
characterized cryoelectron
4

Similar Publications

Group V Chitin Deacetylases Are Responsible for the Structure and Barrier Function of the Gut Peritrophic Matrix in the Chinese Oak Silkworm .

Int J Mol Sci

December 2024

Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.

Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.

View Article and Find Full Text PDF

The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.

View Article and Find Full Text PDF

Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, AlO/Cu composites, reinforced with AlO, are a focal point in the field of high-strength, high-conductivity copper alloys, owing to their high strength, excellent electrical conductivity, and superior resistance to high-temperature softening. Cold deformation is an effective method for enhancing the mechanical properties of AlO/Cu composites.

View Article and Find Full Text PDF

Improving Corrosion Resistance of Zircaloy-4 via High-Current Pulsed Electron Beam Surface Irradiation.

Materials (Basel)

December 2024

Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.

Zircaloy-4 is extensively used in nuclear reactors as fuel element cladding and core structural material. However, the safety concerns post-Fukushima underscore the need for further enhancing its high-temperature and high-pressure water-side corrosion resistance. Therefore, this study aimed to investigate the effects of high-current pulsed electron beam (HCPEB) irradiation on the microstructures and corrosion resistance of Zircaloy-4, with the goal of improving its performance in nuclear applications.

View Article and Find Full Text PDF

Liquid Metal Embrittlement Susceptibility and Crack Formation of the Zn-Coated Complex Phase Steel.

Materials (Basel)

December 2024

State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

In the resistance spot-welding (RSW) of galvanized complex phase (CP) steel, liquid metal embrittlement (LME) may occur, deteriorating the welded joint's performance. Based on the Auto/Steel Partnership (A/SP) standard, the joints of galvanized CP steel welded with a welding current from 7.0 kA to 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!