Background: Autism is a syndrome of unknown cause, marked by abnormal development of social behavior. Attempts to link pathological features of the amygdala, which plays a key role in emotional processing, to autism have shown little consensus.
Objective: To evaluate amygdala volume in individuals with autism spectrum disorders and its relationship to laboratory measures of social behavior to examine whether variations in amygdala structure relate to symptom severity.
Design: We conducted 2 cross-sectional studies of amygdala volume, measured blind to diagnosis on high-resolution, anatomical magnetic resonance images. Participants were 54 males aged 8 to 25 years, including 23 with autism and 5 with Asperger syndrome or pervasive developmental disorder not otherwise specified, recruited and evaluated at an academic center for developmental disabilities and 26 age- and sex-matched community volunteers. The Autism Diagnostic Interview-Revised was used to confirm diagnoses and to validate relationships with laboratory measures of social function.
Main Outcome Measures: Amygdala volume, judgment of facial expressions, and eye tracking.
Results: In study 1, individuals with autism who had small amygdalae were slowest to distinguish emotional from neutral expressions (P=.02) and showed least fixation of eye regions (P=.04). These same individuals were most socially impaired in early childhood, as reported on the Autism Diagnostic Interview-Revised (P<.04). Study 2 showed smaller amygdalae in individuals with autism than in control subjects (P=.03) and group differences in the relation between amygdala volume and age. Study 2 also replicated findings of more gaze avoidance and childhood impairment in participants with autism with the smallest amygdalae. Across the combined sample, severity of social deficits interacted with age to predict different patterns of amygdala development in autism (P=.047).
Conclusions: These findings best support a model of amygdala hyperactivity that could explain most volumetric findings in autism. Further psychophysiological and histopathological studies are indicated to confirm these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767012 | PMC |
http://dx.doi.org/10.1001/archpsyc.63.12.1417 | DOI Listing |
Brain Struct Funct
January 2025
Applied Psychology, Faculty of Education, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada.
Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.
View Article and Find Full Text PDFJpn J Radiol
January 2025
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Otorhinolaryngology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
Background And Purpose: Tinnitus is a condition in which individuals perceive sounds, such as ringing or buzzing, without any external source. Although the exact cause is not fully understood, recent studies have indicated the involvement of nonauditory brain structures, including the limbic system. We aimed to compare the volumes of specific brain structures between patients with tinnitus and controls.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
Background And Objective: Numerous studies suggest that the development of Alzheimer's Disease (AD) leads to a reduction in overall hippocampal volume. However, there is limited research exploring whether pre-morbid differences in hippocampal volume impact the risk of AD. This study aims to delve into the causal relationship between hippocampal subregional volume and AD using bidirectional Mendelian Randomization (MR) methods.
View Article and Find Full Text PDFGeriatr Gerontol Int
January 2025
Department of Prevention Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, Japan.
Aim: This study aims to investigate the impact of aging on brain volume among community residents in Japan, focusing on trends over time and specific brain structures.
Methods: We analyzed data from the fourth survey (2015-2016) of the Research on Osteoarthritis/Osteoporosis Against Disability project, encompassing 2146 community residents from Japan's mountainous and coastal regions. A total of 1755 participants (81.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!