Matrilysin 1 [matrix metalloproteinase 7 (MMP7)] is one of the most important metalloproteinases expressed in human tissues. This enzyme is generally not expressed by normal differentiated epithelial colon cells, but has been shown to be up-regulated in human colon adenomas and adenocarcinomas. Little is known about the role of MMP7 in cell invasion and its involvement in proteolytic processes. By searching the ligands of MMP7 in the colonic carcinoma cells HT29, we identified laminin-5/laminin-332 (LN5) as a specific target for MMP7 enzymatic activity. LN5, composed of alpha3, beta3, and gamma2 chains, is an important component of epithelial basement membranes where it induces firm adhesion and hemidesmosome formation. In this study, we show that LN5 and MMP7 are coexpressed in HT29 cells as well as in HT29 xenograft tumors and human colorectal adenocarcinomas. We provide evidence that human LN5 is a ligand for MMP7 and that a specific cleavage occurs in its beta3 chain, giving rise to a carboxyl-terminal beta3 chain fragment of 90 kDa. We have identified the MMP7 cleavage site at position Ala(515)-Ile(516) in the beta3 chain. Videomicroscopic analysis of HT29 cells plated on LN5 substrates reveals that the MMP7-processed LN5 significantly enhances cell motility. Moreover, the delayed migration of HT29 cells obtained after specific inhibition of MMP7 reinforces the hypothesis supporting its involvement in cell migration. Altogether, our results show that MMP7 is likely to play a crucial role in the regulation of carcinoma cell migration by targeting specific proteolytic processing of the LN5 beta3 chain.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-1187DOI Listing

Publication Analysis

Top Keywords

beta3 chain
20
cell migration
12
ht29 cells
12
carcinoma cell
8
mmp7
8
ln5
7
beta3
6
cell
5
chain
5
cells
5

Similar Publications

Silibinin, a PLC-β3 inhibitor, inhibits mast cell activation and alleviates OVA-induced asthma.

Mol Immunol

January 2025

Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan. Electronic address:

The immunoglobulin E (IgE) receptor FcεRI (Fc epsilon RI) plays a crucial role in allergic reactions. Recent studies have indicated that the interaction between FcεRIβ and the downstream protein phospholipase C beta 3 (PLCβ3) leads to the production of inflammatory cytokines. The aim of this study was to develop small molecules that inhibit the protein-protein interactions between FcεRIβ and PLCβ3 to treat allergic inflammation.

View Article and Find Full Text PDF

Cadmium promotes hyaluronan synthesis by inducing hyaluronan synthase 3 expression in cultured vascular endothelial cells via the c-Jun N-terminal kinase-c-Jun pathway.

Toxicology

January 2025

Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan. Electronic address:

Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space.

View Article and Find Full Text PDF

Modulatory roles of capsaicin on thermogenesis in C2C12 myoblasts and the skeletal muscle of mice.

Chem Biol Interact

February 2025

Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea. Electronic address:

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

Integrin α6β4 subunits and type XVII collagen are critical transmembrane proteins involved in cell-matrix adhesion in skin, while laminin 332 serves as their ligand in the basement membrane zone (BMZ). Those proteins contribute to the composition of hemidesmosomes (HDs) and pathogenic variants in their corresponding genes cause junctional epidermolysis bullosa (JEB). Although the genotype-phenotype relationships in JEB have been extensively studied, the pathogenetic changes of extracellular matrix (ECM) and cell-matrix adhesion resulting from gene mutations remain unclear.

View Article and Find Full Text PDF

S6K/FLNC/ITGβ3 signaling pathway regulates osteoclastogenesis and the inhibition of osteoclastogenesis by columbianadin.

Phytomedicine

January 2025

Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, PR China. Electronic address:

Article Synopsis
  • - The study investigates the effects of Columbianadin (CBN), a compound from traditional medicine, on inhibiting osteoclastogenesis, which contributes to bone loss, and seeks to identify its underlying mechanisms.
  • - Researchers used transcriptomics, RT-PCR, Western blot analysis, and proteomics to uncover changes in gene expression during osteoclast differentiation, focusing on the S6K/FLNC/ITGβ3 signaling pathway.
  • - Results showed that CBN significantly reduced FLNC levels, which in turn decreased markers of osteoclast differentiation and bone resorption in ovariectomized mice, suggesting CBN could be a therapeutic option for bone-related disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!